Please wait a minute...
Chin. Phys. B, 2020, Vol. 29(2): 026201    DOI: 10.1088/1674-1056/ab6841
Special Issue: TOPICAL REVIEW — Advanced calculation & characterization of energy storage materials & devices at multiple scale
TOPICAL REVIEW—Advanced calculation & characterization of energy storage materials & devices at multiple scale Prev   Next  

Review on electrode-level fracture in lithium-ion batteries

Bo Lu(吕浡)1,2, Chengqiang Ning(宁成强)1,2, Dingxin Shi(史定鑫)3, Yanfei Zhao(赵炎翡)3, Junqian Zhang(张俊乾)1,2
1 Shanghai Institute of Applied Mathematics and Mechanics, School of Mechanics and Engineering Science, Shanghai University, Shanghai 200444, China;
2 Shanghai Key Laboratory of Mechanics in Energy Engineering, Shanghai University, Shanghai 200444, China;
3 Department of Civil Engineering, Shanghai University, Shanghai 200444, China
Abstract  Fracture occurred in electrodes of the lithium-ion battery compromises the integrity of the electrode structure and would exert bad influence on the cell performance and cell safety. Mechanisms of the electrode-level fracture and how this fracture would affect the electrochemical performance of the battery are of great importance for comprehending and preventing its occurrence. Fracture occurring at the electrode level is complex, since it may involve fractures in or between different components of the electrode. In this review, three typical types of electrode-level fractures are discussed: the fracture of the active layer, the interfacial delamination, and the fracture of metallic foils (including the current collector and the lithium metal electrode). The crack in the active layer can serve as an effective indicator of degradation of the electrochemical performance. Interfacial delamination usually follows the fracture of the active layer and is detrimental to the cell capacity. Fracture of the current collector impacts cell safety directly. Experimental methods and modeling results of these three types of fractures are concluded. Reasonable explanations on how these electrode-level fractures affect the electrochemical performance are sorted out. Challenges and unsettled issues of investigating these fracture problems are brought up. It is noted that the state-of-the-art studies included in this review mainly focus on experimental observations and theoretical modeling of the typical mechanical damages. However, quantitative investigations on the relationship between the electrochemical performance and the electrode-level fracture are insufficient. To further understand fractures in a multi-scale and multi-physical way, advancing development of the cross discipline between mechanics and electrochemistry is badly needed.
Keywords:  fracture      electrode      lithium-ion battery  
Received:  30 October 2019      Revised:  30 December 2019      Accepted manuscript online: 
PACS: (Fracture)  
  82.45.Fk (Electrodes)  
  82.47.Aa (Lithium-ion batteries)  
Fund: Project supported by the National Key Research and Development Program of China (Grant No. 2017YFB0701604), the National Natural Science Foundation of China (Grant Nos. 11702166, 11702164, 11872236, and 11332005), and the Shanghai Sailing Program, China (Grant No. 17YF1606000).
Corresponding Authors:  Yanfei Zhao     E-mail:

Cite this article: 

Bo Lu(吕浡), Chengqiang Ning(宁成强), Dingxin Shi(史定鑫), Yanfei Zhao(赵炎翡), Junqian Zhang(张俊乾) Review on electrode-level fracture in lithium-ion batteries 2020 Chin. Phys. B 29 026201

[1] Zhang J, Lu B, Song Y and Ji X 2012 J. Power Sources 209 220
[2] Zhao Y, Lu B and Zhang J 2018 Acta Mech. Solida Sin. 31 290
[3] Christensen J and Newman J 2006 J. Electrochem. Soc. 153 A1019
[4] Zhang X, Shyy W and Sastry A M 2007 J. Electrochem. Soc. 154 A910
[5] Cheng Y T and Verbrugge M W 2009 J. Power Sources 190 453
[6] Xie H, Zhang Q, Song H, Shi B and Kang Y 2017 J. Power Sources 342 896
[7] Zhang P, Ma Z, Wang Y, Zou Y, Sun L and Lu C 2019 Mater. Chem. Phys. 222 193
[8] Song Y, Shao X, Guo Z and Zhang J 2013 J. Phys. D-Appl. Phys. 46 105307
[9] Zhang K, Li Y and Zheng B 2015 J. Electrochem. Soc. 162 A1873
[10] Liu H, Wolf M, Karki K, Yu Y S, Stach E A, Cabana J, Chapman K W and Chupas P J 2017 Nano Lett. 17 3452
[11] Xia S, Mu L, Xu Z, Wang J, Wei C, Liu L, Pianett P, Zhao K, Yu X, Lin F and Liu Y 2018 Nano Energy 53 753
[12] Lee S H, Yoon C S, Amine K and Sun Y K 2013 J. Power Sources 234 201
[13] Kim H, Kim M G, Jeong H Y, Nam H and Cho J 2015 Nano Lett. 15 2111
[14] Wang D Y, Wu X D, Wang Z X and Chen L Q 2005 J. Power Sources 140 125
[15] Swallow J G, Woodford W H, McGrogan F P, Ferralis N, Chiang Y M and Van Vliet K J 2014 J. Electrochem. Soc. 161 F3084
[16] Xiao X, Liu P, Verbrugge M W, Haftbaradaran H and Gao H 2011 J. Power Sources 196 1409
[17] Cabana J, Monconduit L, Larcher D and Palacín M R 2010 Adv. Mater. 22 E170
[18] Zhang W J 2011 J. Power Sources 196 877
[19] Liu N, Hu L B, McDowell M T, Jackson A and Cui Y 2011 ACS Nano 5 6487
[20] Ren Z M, Zhang X H, Liu M, Zhou J J, Sun S, He H Y and Wang D Y 2019 J. Power Sources 416 104
[21] Lin Y X, Liu Z, Leung K, Chen L Q, Lu P and Qi Y 2016 J. Power Sources 309 221
[22] Shi S, Gao J, Liu Y, Zhao Y, Wu Q, Ju W, Ouyang C and Xiao R 2016 Chin. Phys. B 25 018212
[23] Riege B, Erhard S V, Kosch S, Venator M, Rheinfeld A and Jossen A 2016 J. Electrochem. Soc. 163 A3099
[24] Lee S, Sastry A M and Park J 2016 J. Power Sources. 315 96
[25] Doyle M, Fuller T F and Newman J 1993 J. Electrochem. Soc. 140 1526
[26] Doyle M, Newman J, Gozdz A S, Schmutz C N and Tarascon J M 1996 J. Electrochem. Soc. 143 1890
[27] Li D, Wang Y, Hu J, Lu B, Dang D, Zhang J and Cheng Y T 2018 J. Power Sources 387 9
[28] Li Y, Lu B, Guo B, Song Y and Zhang J 2019 Electrochim. Acta 295 778
[29] Chon M J, Sethuraman V A, Mc Cormick A, Srinivasan V and Guduru P R 2011 Phys. Rev. Lett. 107 045503
[30] Mukhopadhyay A, Tokranov A, Sena K, Xiao X and Sheldon B W 2011 Carbon 49 2742
[31] Wang Y, Dang D, Li D, Hu J, Zhan X and Cheng Y T 2019 J. Power Sources 438 226938
[32] Song Y, Lu B, Ji X and Zhang J 2012 J. Electrochem. Soc. 159 A2060
[33] Li J, Dozier A K, Li Y, Yang F and Cheng Y T 2011 J. Electrochem. Soc. 158 A689
[34] Tariq F, Yufit V, Eastwood D S, Merla Y, Biton M, Wu B, Chen Z, Freedman K, Offer G, Peled E, Lee P D, Golodnitsky D and Brandon N 2014 ECS Electrochem. Lett. 3 A76
[35] Zhao C, Wada T, De Andrade V, Gürsoy D, Kato H and Chen-Wiegart Y K 2018 Nano Energy 52 381
[36] Beaulieu L Y, Eberman K W, Turner R L, Krause L J and Dahn J R 2001 Electrochem. Solid-State Lett. 4 A137
[37] Wang Y H, He Y, Xiao R J, Li H, Aifantis K E and Huang X J 2012 J. Power Sources 202 236
[38] Yang F 2011 J. Power Sources 196 465
[39] Huggins R A and Nix W D 2000 Ionics 6 57
[40] Haftbaradaran H and Gao H 2012 Appl. Phys. Lett. 100 121907
[41] Haruta M, Doi T and Inaba M 2019 J. Electrochem. Soc. 166 A258
[42] Liu X H, Wang J W, Huang S, Fan F, Huang X, Liu Y, Krylyuk S, Yoo J, Dayeh S A, Davydov A V, Mao S X, Picraux S T, Zhang S, Li J, Zhu T and Huang J Y 2012 Nat. Nanotechnol. 7 749
[43] Wang J W, He Y, Fan F, Liu X H, Xia S, Liu Y, Harris C T, Li H, Huang J Y, Mao S X and Zhu T 2013 Nano Lett. 13 709
[44] Obrovac M N and Christensen L 2004 Electrochem. Solid-State Lett. 7 A93
[45] McDowell M T, Lee S W, Harris J T, Korgel B A, Wang C, Nix W D and Cui Y 2013 Nano Lett. 13 758
[46] Pharr M, Suo Z and Vlassak J J 2013 Nano Lett. 13 5570
[47] Pharr M, Choi Y S, Lee D, Oh K H and Vlassak J J 2016 J. Power Sources 304 164
[48] Choi Y S, Pharr M, Oh K H and Vlassak J J 2015 J. Power Sources 294 159
[49] Wolfenstine J, Foster D, Read J, Behl W K and Luecke W 2000 J. Power Sources 87 1
[50] Gabrisch H, Wilcox J and Doeff M M 2008 Electrochem. Solid-State Lett. 11 A25
[51] McGrogan F P, Raja S N, Chiang Y M and Van Vliet K J 2018 J. Electrochem. Soc. 165 A2458
[52] Lee S W, Lee H W, Ryu I, Nix W D, Gao H and Cui Y 2015 Nat. Commun. 6 7533
[53] Park K J, Hwang J Y, Ryu H H, Maglia F, Kim S J, Lamp P, Yoon C S and Sun Y K 2019 ACS Energy Lett. 4 1394
[54] Liu X H, Zhong L, Huang S, Mao S X, Zhu T and Huang J Y 2012 ACS Nano. 6 1522
[55] Rahani E K and Shenoy V B 2013 J. Electrochem. Soc. 160 A1153
[56] Mendoza H, Roberts S A, Brunini V E and Grillet A M 2016 Electrochim. Acta. 190 1
[57] Jäckel N, Dargel V, Shpigel N, Sigalov S, Levi M D, Daikhin L, Aurbach D and Presser V 2017 J. Power Sources 371 162
[58] Li J, Lewis R B and Dahn J R 2007 Electrochem. Solid-State Lett. 10 A17
[59] Zhao K, Pharr M, Hartle L, Vlassak J J and Suo Z 2012 J. Power Sources 218 6
[60] Lee S, Yang J and Lu W 2016 Extreme Mech. Lett. 6 37
[61] Ma Y, Ma J and Cui G 2019 Energy Storage Mater. 20 146
[62] Fan J and Zhang J 1993 Compos. Sci. Technol. 47 107
[63] Zhang J and Herrmann K P 1999 Compos. Pt. A-Appl. Sci. Manuf. 30 683
[64] Winter M and Besenhard J O 1999 Electrochim. Acta 45 31
[65] Besenhard J O, Yang J and Winter M 1997 J. Power Sources 68 87
[66] Winter M, Besenhard J O, Spahr M E and Novák P 1998 Adv. Mater. 10 725
[67] Yang J, Winter M and Besenhard J O 1996 Solid State Ion. 90 281
[68] Zhao Y, Wang J, He Q, Shi J, Zhang Z, Men X, Yan D and Wang H 2019 ACS Nano. 13 5602
[69] Lee B S, Wu Z, Petrova V, Xing X, Lim H D, Liu H and Liu P 2018 J. Electrochem. Soc. 165 A525
[70] Du Z, Rollag K M, Li J, An S J, Wood M, Sheng Y, Mukherjee P P, Daniel C and Wood D L I I I 2017 J. Power Sources 354 200
[71] Vanpeene V, King A, Maire E and Roué L 2019 Nano Energy 56 799
[72] Vanpeene V, Etiemble A, Bonnin A, Maire E and Roué L 2017 J. Power Sources 350 18
[73] Vanpeene V, Villanova J, King A, Lestriez B, Maire E and Roué L 2019 Adv. Energy Mater. 9 1803947
[74] Hernandez C R, Etiemble A, Douillard T, Mazouzi D, Karkar Z, Maire E, Guyomard D, Lestriez B and Roué L 2018 Adv. Energy Mater 8 1701787
[75] Mughal M Z, Moscatelli R, Amanieu H Y and Sebastiani M 2016 Scr. Mater. 116 62
[76] Qu M, Woodford W H, Maloney J M, Carter W C, Chiang Y M and Van Vliet K J 2012 Adv. Energy Mater. 2 940
[77] Vetter J, Novák P, Wagner M R, Veit C, Möller K C, Besenhard J O, Winter M, Wohlfahrt-Mehrens M, Vogler C and Hammouche A 2005 J. Power Sources 147 269
[78] Su X, Guo K, Ma T, Tamirisa P A, Ye H, Gao H and Sheldon B W 2017 ACS Energy Lett. 2 1729
[79] Zhang S, Zhao K, Zhu T and Li J 2017 Prog. Mater. Sci. 89 479
[80] Choi S, Kwon T, Coskun A and Choi J 2017 Science 357 279
[81] Yan G, Nonemacher J F, Zheng H, Finsterbusch M, Malzbender J and Krüger M 2019 J. Mater. Sci. 54 5671
[82] Yang L, Chen H S, Jiang H, Wei Y J, Song W L and Fang D N 2018 Chem. Commun. 54 3997
[83] Maranchi J P, Hepp A F and Kumta P N 2003 Electrochem. Solid-State Lett. 6 A198
[84] Yang L, Chen H S, Song W L and Fang D 2018 ACS Appl. Mater. Int. 10 43623
[85] Park M, Zhang X, Chung M and Less G B 2010 J. Power Sources 195 7904
[86] Xu J, Zhang Q and Cheng Y T 2016 J. Electrochem. Soc. 163 A401
[87] Rollag K, Juarez-Robles D, Du Z, Wood D L I I I and Mukherjee P P 2019 ACS Appl. Energy Mater. 2 4464
[88] Yang L, Chen H S, Jiang H, Song W L and Fang D 2019 Scr. Mater. 167 11
[89] Zhang J, Lu Y, He L, Yang L and Ni Y 2017 Eng. Fract. Mech. 177 123
[90] Réthoré J, Zheng H, Li H, Li J and Aifantis K E 2018 J. Power Sources 400 383
[91] Mohanty D, Hockaday E, Li J, Hensley D K, Daniel C and Wood III D L 2016 J. Power Sources 312 70
[92] Yang L, Chen H S, Song W L and Fang D 2018 J. Power Sources 405 101
[93] Chew H B, Hou B, Wang X and Xia S 2014 Int. J. Solids Struct. 51 4176
[94] Ding B, Li X Y, Zhang X, Wu H, Xu Z P and Gao H J 2015 Nano Energy 18 89
[95] Khosrownejad S M and Curtin W A 2017 J. Mech. Phys. Solids. 107 542
[96] Lu B, Song Y, Guo Z and Zhang J 2013 Int. J. Solids Struct. 50 2495
[97] He Y, Wang Y, Yu X, Li H and Huang X 2012 J. Electrochem. Soc. 159 A2076
[98] Sengupta S, Mitra A, Dahiya P P, Kumar A, Mallik M, Das K, Majumder S B and Das S 2017 J. Alloy. Compd. 721 236
[99] He Y, Yu X, Li G, Wang R, Li H, Wang Y, Gao H and Huang X 2012 J. Power Sources 216 131
[100] Kim J H, Woo S C, Park M S, Kim K J, Yim T, Kim J S and Kim Y J 2013 J. Power Sources 229 190
[101] Yoon T, Park S, Mun J, Ryu J H, Choi W, Kang Y S, Park J H and Oh S M 2012 J. Power Sources 215 312
[102] Guo Z, Zhou L and Yao H 2019 Mater. 177 107851
[103] Hutchinson J W and Suo Z 1991 Adv. Appl. Mech. 29 63
[104] Hu J, Wang Y, Li D and Cheng Y T 2018 J. Power Sources 397 223
[105] Guo Z, Liu C, Lu B and Feng J 2019 Carbon 150 32
[106] Hao F and Mukherjee P P 2018 J. Electrochem. Soc. 165 A1857
[107] Ma J, Chen B, Wang L and Cui G 2018 J. Power Sources 392 94
[108] Tian H K and Qi Y 2017 J. Electrochem. Soc. 164 E3512
[109] Glenneberg J, Kasiri G, Bardenhagen I, Mantia F L, Busse M and Kun R 2019 Nano Energy 57 549
[110] Taheri P, Hsieh S and Bahrami M 2011 J. Power Sources 196 6525
[111] Zhang W, Cai T H and Sheldon B W 2019 Adv. Energy Mater. 9 1803066
[112] Basu S, Suresh S, Ghatak K, Bartolucci S F, Gupta T, Hundekar P, Kumar R, Lu T M, Datta D, Shi Y and Koratkar N 2018 ACS Appl. Mater. Interfaces 10 13442
[113] Stournara M E, Xiao X, Qi Y, Johari P, Lu P, Sheldon B W, Gao H and Shenoy V B 2013 Nano Lett. 13 4759
[114] Haftbaradaran H, Xiao X, Verbrugge M W and Gao H 2012 J. Power Sources 206 357
[115] Haftbaradaran H 2015 J. Power Sources 288 278
[116] Haftbaradaran H 2015 Procedia Mater. Sci. 11 459
[117] Guo K, Tamirisa P A, Sheldon B W, Xiao X and Gao H 2018 J. Electrochem. Soc. 165 A618
[118] Lang J L, Ding B, Zhang S, Su H X, Ge B H, Qi L H, Gao H J, Li X Y, Li Q Y and Wu H 2017 Adv. Mater. 29 1701777
[119] Pal S, Damle S S, Patel S H, Datta M K, Kumta P N and Maiti S 2014 J. Power Sources 246 149
[120] Liu M 2015 Int. J. Solids Struct. 67-68 263
[121] Liu M, Gao C and Yang F 2017 Model. Simul. Mater. Sci. Eng. 25 065019
[122] Wen J, Wei Y and Cheng Y T 2018 J. Mech. Phys. Solids 116 403
[123] Lu B, Song Y C, Guo Z S and Zhang J Q 2013 Acta Mech. Sin. 29 348
[124] Lu B, Song Y and Zhang J 2015 J. Power Sources 289 168
[125] Liu M, Lu B, Shi D L and Zhang J Q 2018 Acta Mech. Sin. 34 359
[126] Lu B, Zhao Y, Song Y and Zhang J 2016 J. Appl. Mech. 83 121009
[127] Lu B, Ning C, Zhao Y, Song Y and Zhang J 2019 J. Appl. Mech. 86 101006
[128] Tvergaard V and Hutchinson J W 1992 J. Mech. Phys. Solids. 40 1377
[129] Alfano G 2006 Compos. Sci. Technol. 66 723
[130] Yan Y and Shang F 2009 Int. J. Solids Struct. 46 2739
[131] Myung S T, Hitoshi Y and Sun Y K 2011 J. Mater. Chem. A 21 9891
[132] Braithwaite J W, Gonzales A, Nagasubramanian G, Lucero S J, Peebles D E, Ohlhausen J A and Cieslak W R 1999 J. Electrochem. Soc. 146 448
[133] Yang H, Kwon K, Devine T M and Evans J W 2000 J. Electrochem. Soc. 147 4399
[134] Zhang S S and Jow T R 2002 J. Power Sources 109 458
[135] Garcia B and Armand M 2004 J. Power Sources 132 206
[136] Guo M Q, Meng W J, Zhang X G, Bai Z C, Wang G W, Wang Z H and Yang F Q 2019 J. Electron. Mater. 48 7543
[137] Sahraei E, Campbell J and Wierzbicki T 2012 J. Power Sources 220 360
[138] Lamb J and Orendorff C J 2014 J. Power Sources 247 189
[139] Wang H, Lara-Curzio E, Rule E T and Winchester C S 2017 J. Power Sources 342 913
[140] Wang Q, Ping P, Zhao X, Chu G, Sun J and Chen C 2012 J. Power Sources 208 210
[141] Luo H, Xia Y and Zhou Q 2017 J. Power Sources 357 61
[142] Song Y, Li Z and Zhang J 2014 J. Power Sources 263 22
[143] Bonatti C and Mohr D 2016 Mater. Sci. Eng. A-Struct. Mater. Prop. 654 329
[144] Wang H, Watkins T R, Simunovic S, Bingham P R, Allu S and Turner J A 2017 J. Power Sources 364 432
[145] Zhu J, Zhang X, Sahraei E and Wierzbicki T 2016 J. Power Source 336 332
[146] Zhu Z, Hu H, He Y and Tao B 2018 Compos. Struct. 204 822
[147] Tarascon J M and Armand M 2001 Nature 414 359
[148] Xu K 2004 Chem. Rev. 104 4303
[149] Xu W, Wang J, Ding F and Chen X 2014 Energy Environ. Sci. 7 513
[150] Guan X, Wang A, Liu S, Li G, Liang F, Yang Y W, Liu X and Luo J 2018 Small 14 1801423
[151] Qian J, Henderson W A, Xu W, Bhattacharya P, Engelhard M, Borodin O and Zhang J G 2015 Nat. Commun. 6 6362
[152] Yang C P, Yin Y X, Zhang S F, Li N W and Guo Y G 2015 Nat. Commun. 6 8058
[153] Wang P, Qu W, Song W L, Chen H, Chen R and Fang D 2019 Adv. Funct. Mater. 29 1900950
[154] Shi Q, Zhong Y, Wu M, Wang H and Wang H 2018 Proc. Natl. Acad. Sci. 115 5676
[155] Chen Y, Luo Y, Zhang H, Qu C, Zhang H and Li X 2019 Small Methods 3 1800551
[156] Zhu R, Feng J and Guo Z 2019 J. Electrochem. Soc. 166 A1107
[157] Li L, Basu S, Wang Y, Chen Z, Hundekar P, Wang B, Shi J, Shi Y, Narayanan S and Koratkar N 2018 Science 359 1513
[158] Wang X, Zeng W, Hong L, Xu W, Yang H, Wang F, Duan H, Tang M and Jiang H 2018 Nat. Energy 3 227
[159] Yulaev A, Oleshko V, Haney P, Liu J, Qi Y, Talin A A, Leite M S and Kolmakov A 2018 Nano Lett. 18 1644
[160] Monroe C and Newman J 2003 J. Electrochem. Soc. 150 A1377
[161] Rosso M, Chassaing E, Chazalviel J N and Gobron T 2002 Electrochim. Acta 47 1267
[162] Ding F, Xu W, Graff G L, Zhang J, Sushko M L, Chen X, Shao Y, Engelhard M H, Nie Z, Xiao J, Liu X, Sushko P V, Liu J and Zhang J G 2013 J. Am. Chem. Soc. 135 4450
[163] Gireaud L, Grugeon S, Laruelle S, Yrieix B and Tarascon J M 2006 Electrochem. Commun. 8 1639
[164] Liu Y, Liu Q, Xin L, Liu Y, Yang F, Stach E A and Xie J 2017 Nat. Energy 2 17083
[165] Varias A G, Suo Z and Shih C F 1991 J. Mech. Phys. Solids. 39 963
[166] Klein M, Hadrboletz A, Weiss B and Khatibi G 2001 Mater. Sci. Eng. A-Struct. Mater. Prop 319 924
[167] Wang H W, Kang Y L, Zhang Z F and Qin Q H 2003 Int. J. Fract. 123 177
[1] Probing the improved stability for high nickel cathode via dual-element modification in lithium-ion
Fengling Chen(陈峰岭), Chaozhi Zeng(曾朝智), Chun Huang(黄淳), Jiannan Lin(林建楠), Yifan Chen(陈一帆), Binbin Dong(董彬彬), Chujun Yin(尹楚君), Siying Tian(田飔莹), Dapeng Sun(孙大鹏), Zhenyu Zhang(张振宇), Hong Li(李泓), and Chaobo Li(李超波). Chin. Phys. B, 2022, 31(7): 078101.
[2] Enhancement of electrochemical performance in lithium-ion battery via tantalum oxide coated nickel-rich cathode materials
Fengling Chen(陈峰岭), Jiannan Lin(林建楠), Yifan Chen(陈一帆), Binbin Dong(董彬彬), Chujun Yin(尹楚君), Siying Tian(田飔莹), Dapeng Sun(孙大鹏), Jing Xie (解婧),Zhenyu Zhang(张振宇), Hong Li(李泓), and Chaobo Li(李超波). Chin. Phys. B, 2022, 31(5): 058101.
[3] Three-dimensional vertical ZnO transistors with suspended top electrodes fabricated by focused ion beam technology
Chi Sun(孙驰), Linyuan Zhao(赵林媛), Tingting Hao(郝婷婷), Renrong Liang(梁仁荣), Haitao Ye(叶海涛), Junjie Li(李俊杰), and Changzhi Gu(顾长志). Chin. Phys. B, 2022, 31(1): 016801.
[4] High efficiency ETM-free perovskite cell composed of CuSCN and increasing gradient CH3NH3PbI3
Tao Wang(汪涛), Gui-Jiang Xiao(肖贵将), Ren Sun(孙韧), Lin-Bao Luo(罗林保), and Mao-Xiang Yi(易茂祥). Chin. Phys. B, 2022, 31(1): 018801.
[5] Analysis on diffusion-induced stress for multi-layer spherical core-shell electrodes in Li-ion batteries
Siyuan Yang(杨思源), Chuanwei Li(李传崴), Zhifeng Qi(齐志凤), Lipan Xin(辛立攀), Linan Li(李林安), Shibin Wang(王世斌), and Zhiyong Wang(王志勇). Chin. Phys. B, 2021, 30(9): 098201.
[6] Stabilization of formamidinium lead iodide perovskite precursor solution for blade-coating efficient carbon electrode perovskite solar cells
Yu Zhan(占宇), Weijie Chen(陈炜杰), Fu Yang(杨甫), and Yaowen Li(李耀文). Chin. Phys. B, 2021, 30(8): 088803.
[7] Silicon micropillar electrodes of lithiumion batteries used for characterizing electrolyte additives
Fangrong Hu(胡放荣), Mingyang Zhang(张铭扬), Wenbin Qi(起文斌), Jieyun Zheng(郑杰允), Yue Sun(孙悦), Jianyu Kang(康剑宇), Hailong Yu(俞海龙), Qiyu Wang(王其钰), Shijuan Chen(陈世娟), Xinhua Sun(孙新华), Baogang Quan(全保刚), Junjie Li(李俊杰), Changzhi Gu(顾长志), and Hong Li(李泓). Chin. Phys. B, 2021, 30(6): 068202.
[8] Properties of B4C-TiB2 ceramics prepared by spark plasma sintering
Jingzhe Fan(范静哲), Weixia Shen(沈维霞), Zhuangfei Zhang(张壮飞, Chao Fang(房超), Yuewen Zhang(张跃文), Liangchao Chen(陈良超), Qianqian Wang(王倩倩), Biao Wan(万彪), and Xiaopeng Jia(贾晓鹏). Chin. Phys. B, 2021, 30(3): 038105.
[9] Peculiar diffusion behavior of AlCl4 intercalated in graphite from nanosecond-long molecular dynamics simulations
Qianpeng Wang(王乾鹏), Daye Zheng(郑大也), Lixin He(何力新), and Xinguo Ren(任新国). Chin. Phys. B, 2021, 30(10): 107102.
[10] Experimental investigation of electrode cycle performance and electrochemical kinetic performance under stress loading
Zi-Han Liu(刘子涵), Yi-Lan Kang(亢一澜), Hai-Bin Song(宋海滨), Qian Zhang(张茜), and Hai-Mei Xie(谢海妹). Chin. Phys. B, 2021, 30(1): 016201.
[11] Research of influence of the additional electrode on Hall thruster plume by particle-in-cell simulation
Xi-Feng Cao(曹希峰), Hui Liu(刘辉), Da-Ren Yu(于达仁). Chin. Phys. B, 2020, 29(9): 095204.
[12] SiO2 nanoparticle-regulated crystallization of lead halide perovskite and improved efficiency of carbon-electrode-based low-temperature planar perovskite solar cells
Zerong Liang(梁泽荣), Bingchu Yang(杨兵初), Anyi Mei(梅安意), Siyuan Lin(林思远), Hongwei Han(韩宏伟), Yongbo Yuan(袁永波), Haipeng Xie(谢海鹏), Yongli Gao(高永立), Conghua Zhou(周聪华). Chin. Phys. B, 2020, 29(7): 078401.
[13] Failure analysis with a focus on thermal aspect towards developing safer Na-ion batteries
Yuqi Li(李钰琦), Yaxiang Lu(陆雅翔), Liquan Chen(陈立泉), Yong-Sheng Hu(胡勇胜). Chin. Phys. B, 2020, 29(4): 048201.
[14] Hybrid-PIC/PIC simulations on ion extraction by electric field in laser-induced plasma
Xiao-Yong Lu(卢肖勇), Cheng Yuan(袁程), Xiao-Zhang Zhang(张小章), Zhi-Zhong Zhang(张志忠). Chin. Phys. B, 2020, 29(4): 045201.
[15] Dynamic evolution of vortex structures induced bytri-electrode plasma actuator
Bo-Rui Zheng(郑博睿), Ming Xue(薛明), Chang Ge(葛畅). Chin. Phys. B, 2020, 29(2): 024704.
No Suggested Reading articles found!