Please wait a minute...
Chin. Phys. B, 2020, Vol. 29(1): 017802    DOI: 10.1088/1674-1056/ab5a3a
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES Prev   Next  

Thickness-dependent excitonic properties of atomically thin 2H-MoTe2

Jin-Huan Li(李金焕)1, Dan Bing(邴单)1, Zhang-Ting Wu(吴章婷)3, Guo-Qing Wu(吴国庆)1, Jing Bai(白静)1, Ru-Xia Du(杜如霞)1, Zheng-Qing Qi(祁正青)2
1 Department of Basic Teaching, Nanjing Tech University Pujiang Institute, Nanjing 211134, China;
2 School of Network and Communication Engineering, Jinling Institute of Technology, Nanjing 211169, China;
3 Lab for Nanoelectronics and NanoDevices, Department of Electronics Science and Technology, Hangzhou Dianzi University, Hangzhou 310018, China
Abstract  Two-dimensional (2D) 2H-MoTe2 is a promising semiconductor because of its small bandgap, strong absorption, and low thermal conductivity. In this paper, we systematically study the optical and excitonic properties of atomically thin 2H-MoTe2 (1-5 layers). Due to the fact that the optical contrast and Raman spectra of 2H-MoTe2 with different thicknesses exhibit distinctly different behaviors, we establish a quantitative method by using optical images and Raman spectra to directly identify the layers of 2H-MoTe2 thin films. Besides, excitonic states and binding energy in monolayer/bilayer 2H-MoTe2 are measured by temperature-dependent photoluminescence (PL) spectroscopy. At temperature T=3.3 K, we can observe an exciton emission at ~1.19 eV and trion emission at ~1.16 eV for monolayer 2H-MoTe2. While at room temperature, the exciton emission and trion emission both disappear for their small binding energy. We determine the exciton binding energy to be 185 meV (179 meV), trion binding energy to be 20 meV (18 meV) for the monolayer (bilayer) 2H-MoTe2. The thoroughly studies of the excitonic states in atomically thin 2H-MoTe2 will provide guidance for future practical applications.
Keywords:  2H-MoTe2      photoluminescence      Raman      exciton and trion  
Received:  20 October 2019      Revised:  19 November 2019      Accepted manuscript online: 
PACS:  78.67.-n (Optical properties of low-dimensional, mesoscopic, and nanoscale materials and structures)  
  78.55.-m (Photoluminescence, properties and materials)  
  74.25.nd (Raman and optical spectroscopy)  
Fund: Project supported by the Natural Science Research Projects in Colleges and Universities of Jiangsu Province, China (Grant No. 18KJD140003).
Corresponding Authors:  Zheng-Qing Qi     E-mail:  qi.zq@163.com

Cite this article: 

Jin-Huan Li(李金焕), Dan Bing(邴单), Zhang-Ting Wu(吴章婷), Guo-Qing Wu(吴国庆), Jing Bai(白静), Ru-Xia Du(杜如霞), Zheng-Qing Qi(祁正青) Thickness-dependent excitonic properties of atomically thin 2H-MoTe2 2020 Chin. Phys. B 29 017802

[1] Guo X T, Wang W H, Nan H Y, Yu Y F, Jiang J, Zhao W W, Li J H, Zafar Z, Xiang N, Ni Z H, Hu W D, You Y M and Ni Z H 2016 Optica 3 1066
[2] Du R X, Wang W H, Du J X, Guo X T, Liu E, Bing D and Bai J 2016 Appl. Phys. Express 9 115101
[3] Zhang H, Cheng H M and Ye P D 2018 Chem. Soc. Rev. 47 6009
[4] Lv R T, Robinson J, Schaak R, Sun D, Sun Y F, Mallouk T and Terrones M 2014 Acc. Chem. Res. 48 56
[5] Splendiani A, Sun L, Zhang Y, Li T, Kim J, Chim C Y, Galli G and Wang F 2010 Nano Lett. 10 1271
[6] Zhao W, Ghorannevis Z, Chu L, Toh M, Kloc C, Tan P H and Eda G 2012 ACS Nano 7 791
[7] Tongay S, Zhou J, Ataca C, Lo K, Matthews T S, Li J, Grossman J C and Wu J 2012 Nano Lett. 12 5576
[8] Zhang Y, Chang T R, Zhou B, Cui Y T, Yan H, Liu Z, Schmitt F, Lee J, Moore R, Chen Y, Lin H, Jeng H T, Mo S K, Hussain Z, Bansil A and Shen Z X 2014 Nat. Nanotechnol. 9 111
[9] Lezama I G, Arora A, Ubaldini A, Barreteau C, Giannini E, Potemski M and Morpurgo A F 2015 I Nano Lett. 15 2336
[10] Cao T, Wang G, Han W, Ye H, Zhu C, Shi J, Niu Q, Tan P, Wang E, Liu B and Feng J 2012 Nat. Commun. 3 887
[11] Mak K F, He K, Shan J and Heinz T F 2012 Nat. Nanotechnol. 7 494
[12] Zhang Y J, Oka T, Suzuki R, Ye J T and Iwasa Y 2014 Science 344 725
[13] Eda G and Maier S A 2013 ACS Nano 7 5660
[14] Yang J, Lü T, Myint Y W, Pei J, Macdonald D, Zheng J C and Lu Y 2015 ACS Nano 9 6603
[15] Huang H, Wang J, Hu W, Liao L, Wang P, Wang X, Gong F, Chen Y, Wu G, Luo W, Shen H, Lin T, Sun J, Meng X, Chen X and Chu J 2016 Nanotechnology 27 445201
[16] Octon T, Nagareddy V, Russo S, Craciun M and Wright C 2016 Adv. Opt. Mater. 4 1750
[17] Yu W, Li S, Zhang Y, Ma W, Sun T, Yuan J, Fu K and Bao Q 2017 Small 13 1700268
[18] Conan A, Bonnet A, Zoaeter M and Ramoul D 1984 Phys. Status Solidi B 124 403
[19] Lin Y F, Xu Y, Wang S T, Li S L, Yamamoto M, Aparecido-Ferreira A, Li W, Sun W H, Nakaharai S and Jian W B 2014 Adv. Mater. 26 3263
[20] Feng Z, Xie Y, Chen, J, Yu Y, Zheng S, Zhang R and Pang W 2017 2D Materials 4 025018
[21] Sun L, Ding M, Li J, Yang L, Lou X, Xie Z, Chang H 2019 Appl. Surf. Sci. 496 143687
[22] Li Y, Duerloo K A, Wauson K and Reed E J 2016 Nat. Commun. 7 10671
[23] Ruppert C, Aslan O B and Heinz T F 2014 Nano Lett. 14 6231
[24] Yamamoto M, Wang S T, Ni M, Lin Y F, Li S L, Aikawa S, Jian W B, Ueno K, Wakabayashi K and Tsukagoshi K 2014 ACS Nano 8 3895
[25] Guo H H, Yang T, Yamamoto M, Zhou L, Ishikawa R, Ueno K, Tsukagoshi K, Zhang Z D, Dresselhaus M S and Saito R 2015 Phys. Rev. B 91 205415
[26] Grzeszczyk M, Golasa K, Zinkiewicz M, Nogajewski K, Molas M R, Potemski M, Wysmolek A and Babiński A 2016 2D Material 3 025010
[27] Qiu D Y, da Jornada F H and Louie S G 2013 Phys. Rev. Lett. 111 216805
[28] Berkelbach T, Hybertsen M and Reichman D 2013 Phys. Rev. B 88 045318
[29] Zhu B, Chen X, Cui X 2015 Sci. Rep. 5 9218
[30] Chang Y M, Lin C Y, Lin Y F, and Tsukagoshi K 2016 Jpn. J Appl. Phys. 55 1102A1
[31] Nemes-Incze P, Osvath Z, Kamaras K and Biro L P 2008 Carbon 46 1435
[32] Lee C, Yan H, Brus L E, Heinz T F, Hone J and Ryu S 2010 ACS Nano 4 2695
[33] Wang Y Y, Gao R X, Ni Z H, He H, Guo S P, Yang H P, Cong C X and Yu T 2012 Nanotechnology 23 495713
[34] Ni Z H, Wang Y Y, Yu T and Shen Z X 2008 Nano Res. 1 273
[35] Song Q J, Tan Q H, Zhang X, Wu J B, Sheng B W, Wan Y, Wang X Q, Dai L and Tan P H 2016 Phys. Rev. B 93 115409
[36] Kim S, Kim K, Lee J U and Cheong H 2017 2D Materials 4 045002
[37] Ross J S, Wu S, Yu H, Ghimire N J, Jones A M, Aivazian G, Yan J, Mandrus D G, Xiao D, Yao W and Xu X 2013 Nat. Commun. 4 1474
[38] Mak K F, He K, Lee C, Lee G H, Hone J, Heinz T F and Shan J 2013 Nat. Mater. 12 207
[39] Jones A M, Yu H, Ross J S, Klement P, Ghimire N J, Yan J Q, Mandrus D G, Yao W and Xu X D 2014 Nat. Phys. 10 130
[40] Huang J, Hoang T B and Mikkelsen M H 2016 Sci. Rep. 6 22414
[41] Kulyuk L, Charron L and Fortin E 2003 Phys. Rev. B 68 075314
[42] Zhang Y, Ugeda M M, Jin C H, Shi S F, Bradley A J, Martín-Recio A and Zhou B 2016 Nano Lett. 16 2485
[1] Polarization Raman spectra of graphene nanoribbons
Wangwei Xu(许望伟), Shijie Sun(孙诗杰), Muzi Yang(杨慕紫), Zhenliang Hao(郝振亮), Lei Gao(高蕾), Jianchen Lu(卢建臣), Jiasen Zhu(朱嘉森), Jian Chen(陈建), and Jinming Cai(蔡金明). Chin. Phys. B, 2023, 32(4): 046803.
[2] Impact of amplified spontaneous emission noise on the SRS threshold of high-power fiber amplifiers
Wei Liu(刘伟), Shuai Ren(任帅), Pengfei Ma(马鹏飞), and Pu Zhou(周朴). Chin. Phys. B, 2023, 32(3): 034202.
[3] Thermally enhanced photoluminescence and temperature sensing properties of Sc2W3O12:Eu3+ phosphors
Yu-De Niu(牛毓德), Yu-Zhen Wang(汪玉珍), Kai-Ming Zhu(朱凯明), Wang-Gui Ye(叶王贵), Zhe Feng(冯喆), Hui Liu(柳挥), Xin Yi(易鑫), Yi-Huan Wang(王怡欢), and Xuan-Yi Yuan(袁轩一). Chin. Phys. B, 2023, 32(2): 028703.
[4] Growth behaviors and emission properties of Co-deposited MAPbI3 ultrathin films on MoS2
Siwen You(游思雯), Ziyi Shao(邵子依), Xiao Guo(郭晓), Junjie Jiang(蒋俊杰), Jinxin Liu(刘金鑫), Kai Wang(王凯), Mingjun Li(李明君), Fangping Ouyang(欧阳方平), Chuyun Deng(邓楚芸), Fei Song(宋飞), Jiatao Sun(孙家涛), and Han Huang(黄寒). Chin. Phys. B, 2023, 32(1): 017901.
[5] In situ study of calcite-III dimorphism using dynamic diamond anvil cell
Xia Zhao(赵霞), Sheng-Hua Mei(梅升华), Zhi Zheng(郑直), Yue Gao(高悦), Jiang-Zhi Chen(陈姜智), Yue-Gao Liu(刘月高), Jian-Guo Sun(孙建国), Yan Li(李艳), and Jian-Hui Sun(孙建辉). Chin. Phys. B, 2022, 31(9): 096201.
[6] In-plane optical anisotropy of two-dimensional VOCl single crystal with weak interlayer interaction
Ruijie Wang(王瑞洁), Qilong Cui(崔其龙), Wen Zhu(朱文), Yijie Niu(牛艺杰), Zhanfeng Liu(刘站锋), Lei Zhang(张雷), Xiaojun Wu(武晓君), Shuangming Chen(陈双明), and Li Song(宋礼). Chin. Phys. B, 2022, 31(9): 096802.
[7] Radiation effects of electrons on multilayer FePS3 studied with laser plasma accelerator
Meng Peng(彭猛), Jun-Bo Yang(杨俊波), Hao Chen(陈浩), Bo-Yuan Li(李博源), Xu-Lei Ge(葛绪雷), Xiao-Hu Yang(杨晓虎), Guo-Bo Zhang(张国博), and Yan-Yun Ma(马燕云). Chin. Phys. B, 2022, 31(8): 086102.
[8] Enhanced photoluminescence of monolayer MoS2 on stepped gold structure
Yu-Chun Liu(刘玉春), Xin Tan(谭欣), Tian-Ci Shen(沈天赐), and Fu-Xing Gu(谷付星). Chin. Phys. B, 2022, 31(8): 087803.
[9] Structural evolution and bandgap modulation of layered β-GeSe2 single crystal under high pressure
Hengli Xie(谢恒立), Jiaxiang Wang(王家祥), Lingrui Wang(王玲瑞), Yong Yan(闫勇), Juan Guo(郭娟), Qilong Gao(高其龙), Mingju Chao(晁明举), Erjun Liang(梁二军), and Xiao Ren(任霄). Chin. Phys. B, 2022, 31(7): 076101.
[10] SERS activity of carbon nanotubes modified by silver nanoparticles with different particle sizes
Xiao-Lei Zhang(张晓蕾), Jie Zhang(张洁), Yuan Luo(罗元), and Jia Ran(冉佳). Chin. Phys. B, 2022, 31(7): 077401.
[11] Exploration of structural, optical, and photoluminescent properties of (1-x)NiCo2O4/xPbS nanocomposites for optoelectronic applications
Zein K Heiba, Mohamed Bakr Mohamed, Noura M Farag, and Ali Badawi. Chin. Phys. B, 2022, 31(6): 067801.
[12] Photothermal-chemical synthesis of P-S-H ternary hydride at high pressures
Tingting Ye(叶婷婷), Hong Zeng(曾鸿), Peng Cheng(程鹏), Deyuan Yao(姚德元), Xiaomei Pan(潘孝美), Xiao Zhang(张晓), and Junfeng Ding(丁俊峰). Chin. Phys. B, 2022, 31(6): 067402.
[13] Raman spectroscopy investigation on the pressure-induced structural and magnetic phase transition in two-dimensional antiferromagnet FePS3
Hong Zeng(曾鸿), Tingting Ye(叶婷婷), Peng Cheng(程鹏), Deyuan Yao(姚德元), and Junfeng Ding(丁俊峰). Chin. Phys. B, 2022, 31(5): 056109.
[14] Effects of Landau damping and collision on stimulated Raman scattering with various phase-space distributions
Shanxiu Xie(谢善秀), Yong Chen(陈勇), Junchen Ye(叶俊辰), Yugu Chen(陈雨谷), Na Peng(彭娜), and Chengzhuo Xiao(肖成卓). Chin. Phys. B, 2022, 31(5): 055201.
[15] Exciton luminescence and many-body effect of monolayer WS2 at room temperature
Jian-Min Wu(吴建民), Li-Hui Li(黎立辉), Wei-Hao Zheng(郑玮豪), Bi-Yuan Zheng(郑弼元), Zhe-Yuan Xu(徐哲元), Xue-Hong Zhang(张学红), Chen-Guang Zhu(朱晨光), Kun Wu(吴琨), Chi Zhang(张弛), Ying Jiang(蒋英),Xiao-Li Zhu(朱小莉), and Xiu-Juan Zhuang(庄秀娟). Chin. Phys. B, 2022, 31(5): 057803.
No Suggested Reading articles found!