CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES |
Prev
Next
|
|
|
Thickness-dependent excitonic properties of atomically thin 2H-MoTe2 |
Jin-Huan Li(李金焕)1, Dan Bing(邴单)1, Zhang-Ting Wu(吴章婷)3, Guo-Qing Wu(吴国庆)1, Jing Bai(白静)1, Ru-Xia Du(杜如霞)1, Zheng-Qing Qi(祁正青)2 |
1 Department of Basic Teaching, Nanjing Tech University Pujiang Institute, Nanjing 211134, China; 2 School of Network and Communication Engineering, Jinling Institute of Technology, Nanjing 211169, China; 3 Lab for Nanoelectronics and NanoDevices, Department of Electronics Science and Technology, Hangzhou Dianzi University, Hangzhou 310018, China |
|
|
Abstract Two-dimensional (2D) 2H-MoTe2 is a promising semiconductor because of its small bandgap, strong absorption, and low thermal conductivity. In this paper, we systematically study the optical and excitonic properties of atomically thin 2H-MoTe2 (1-5 layers). Due to the fact that the optical contrast and Raman spectra of 2H-MoTe2 with different thicknesses exhibit distinctly different behaviors, we establish a quantitative method by using optical images and Raman spectra to directly identify the layers of 2H-MoTe2 thin films. Besides, excitonic states and binding energy in monolayer/bilayer 2H-MoTe2 are measured by temperature-dependent photoluminescence (PL) spectroscopy. At temperature T=3.3 K, we can observe an exciton emission at ~1.19 eV and trion emission at ~1.16 eV for monolayer 2H-MoTe2. While at room temperature, the exciton emission and trion emission both disappear for their small binding energy. We determine the exciton binding energy to be 185 meV (179 meV), trion binding energy to be 20 meV (18 meV) for the monolayer (bilayer) 2H-MoTe2. The thoroughly studies of the excitonic states in atomically thin 2H-MoTe2 will provide guidance for future practical applications.
|
Received: 20 October 2019
Revised: 19 November 2019
Accepted manuscript online:
|
PACS:
|
78.67.-n
|
(Optical properties of low-dimensional, mesoscopic, and nanoscale materials and structures)
|
|
78.55.-m
|
(Photoluminescence, properties and materials)
|
|
74.25.nd
|
(Raman and optical spectroscopy)
|
|
Fund: Project supported by the Natural Science Research Projects in Colleges and Universities of Jiangsu Province, China (Grant No. 18KJD140003). |
Corresponding Authors:
Zheng-Qing Qi
E-mail: qi.zq@163.com
|
Cite this article:
Jin-Huan Li(李金焕), Dan Bing(邴单), Zhang-Ting Wu(吴章婷), Guo-Qing Wu(吴国庆), Jing Bai(白静), Ru-Xia Du(杜如霞), Zheng-Qing Qi(祁正青) Thickness-dependent excitonic properties of atomically thin 2H-MoTe2 2020 Chin. Phys. B 29 017802
|
[1] |
Guo X T, Wang W H, Nan H Y, Yu Y F, Jiang J, Zhao W W, Li J H, Zafar Z, Xiang N, Ni Z H, Hu W D, You Y M and Ni Z H 2016 Optica 3 1066
|
[2] |
Du R X, Wang W H, Du J X, Guo X T, Liu E, Bing D and Bai J 2016 Appl. Phys. Express 9 115101
|
[3] |
Zhang H, Cheng H M and Ye P D 2018 Chem. Soc. Rev. 47 6009
|
[4] |
Lv R T, Robinson J, Schaak R, Sun D, Sun Y F, Mallouk T and Terrones M 2014 Acc. Chem. Res. 48 56
|
[5] |
Splendiani A, Sun L, Zhang Y, Li T, Kim J, Chim C Y, Galli G and Wang F 2010 Nano Lett. 10 1271
|
[6] |
Zhao W, Ghorannevis Z, Chu L, Toh M, Kloc C, Tan P H and Eda G 2012 ACS Nano 7 791
|
[7] |
Tongay S, Zhou J, Ataca C, Lo K, Matthews T S, Li J, Grossman J C and Wu J 2012 Nano Lett. 12 5576
|
[8] |
Zhang Y, Chang T R, Zhou B, Cui Y T, Yan H, Liu Z, Schmitt F, Lee J, Moore R, Chen Y, Lin H, Jeng H T, Mo S K, Hussain Z, Bansil A and Shen Z X 2014 Nat. Nanotechnol. 9 111
|
[9] |
Lezama I G, Arora A, Ubaldini A, Barreteau C, Giannini E, Potemski M and Morpurgo A F 2015 I Nano Lett. 15 2336
|
[10] |
Cao T, Wang G, Han W, Ye H, Zhu C, Shi J, Niu Q, Tan P, Wang E, Liu B and Feng J 2012 Nat. Commun. 3 887
|
[11] |
Mak K F, He K, Shan J and Heinz T F 2012 Nat. Nanotechnol. 7 494
|
[12] |
Zhang Y J, Oka T, Suzuki R, Ye J T and Iwasa Y 2014 Science 344 725
|
[13] |
Eda G and Maier S A 2013 ACS Nano 7 5660
|
[14] |
Yang J, Lü T, Myint Y W, Pei J, Macdonald D, Zheng J C and Lu Y 2015 ACS Nano 9 6603
|
[15] |
Huang H, Wang J, Hu W, Liao L, Wang P, Wang X, Gong F, Chen Y, Wu G, Luo W, Shen H, Lin T, Sun J, Meng X, Chen X and Chu J 2016 Nanotechnology 27 445201
|
[16] |
Octon T, Nagareddy V, Russo S, Craciun M and Wright C 2016 Adv. Opt. Mater. 4 1750
|
[17] |
Yu W, Li S, Zhang Y, Ma W, Sun T, Yuan J, Fu K and Bao Q 2017 Small 13 1700268
|
[18] |
Conan A, Bonnet A, Zoaeter M and Ramoul D 1984 Phys. Status Solidi B 124 403
|
[19] |
Lin Y F, Xu Y, Wang S T, Li S L, Yamamoto M, Aparecido-Ferreira A, Li W, Sun W H, Nakaharai S and Jian W B 2014 Adv. Mater. 26 3263
|
[20] |
Feng Z, Xie Y, Chen, J, Yu Y, Zheng S, Zhang R and Pang W 2017 2D Materials 4 025018
|
[21] |
Sun L, Ding M, Li J, Yang L, Lou X, Xie Z, Chang H 2019 Appl. Surf. Sci. 496 143687
|
[22] |
Li Y, Duerloo K A, Wauson K and Reed E J 2016 Nat. Commun. 7 10671
|
[23] |
Ruppert C, Aslan O B and Heinz T F 2014 Nano Lett. 14 6231
|
[24] |
Yamamoto M, Wang S T, Ni M, Lin Y F, Li S L, Aikawa S, Jian W B, Ueno K, Wakabayashi K and Tsukagoshi K 2014 ACS Nano 8 3895
|
[25] |
Guo H H, Yang T, Yamamoto M, Zhou L, Ishikawa R, Ueno K, Tsukagoshi K, Zhang Z D, Dresselhaus M S and Saito R 2015 Phys. Rev. B 91 205415
|
[26] |
Grzeszczyk M, Golasa K, Zinkiewicz M, Nogajewski K, Molas M R, Potemski M, Wysmolek A and Babiński A 2016 2D Material 3 025010
|
[27] |
Qiu D Y, da Jornada F H and Louie S G 2013 Phys. Rev. Lett. 111 216805
|
[28] |
Berkelbach T, Hybertsen M and Reichman D 2013 Phys. Rev. B 88 045318
|
[29] |
Zhu B, Chen X, Cui X 2015 Sci. Rep. 5 9218
|
[30] |
Chang Y M, Lin C Y, Lin Y F, and Tsukagoshi K 2016 Jpn. J Appl. Phys. 55 1102A1
|
[31] |
Nemes-Incze P, Osvath Z, Kamaras K and Biro L P 2008 Carbon 46 1435
|
[32] |
Lee C, Yan H, Brus L E, Heinz T F, Hone J and Ryu S 2010 ACS Nano 4 2695
|
[33] |
Wang Y Y, Gao R X, Ni Z H, He H, Guo S P, Yang H P, Cong C X and Yu T 2012 Nanotechnology 23 495713
|
[34] |
Ni Z H, Wang Y Y, Yu T and Shen Z X 2008 Nano Res. 1 273
|
[35] |
Song Q J, Tan Q H, Zhang X, Wu J B, Sheng B W, Wan Y, Wang X Q, Dai L and Tan P H 2016 Phys. Rev. B 93 115409
|
[36] |
Kim S, Kim K, Lee J U and Cheong H 2017 2D Materials 4 045002
|
[37] |
Ross J S, Wu S, Yu H, Ghimire N J, Jones A M, Aivazian G, Yan J, Mandrus D G, Xiao D, Yao W and Xu X 2013 Nat. Commun. 4 1474
|
[38] |
Mak K F, He K, Lee C, Lee G H, Hone J, Heinz T F and Shan J 2013 Nat. Mater. 12 207
|
[39] |
Jones A M, Yu H, Ross J S, Klement P, Ghimire N J, Yan J Q, Mandrus D G, Yao W and Xu X D 2014 Nat. Phys. 10 130
|
[40] |
Huang J, Hoang T B and Mikkelsen M H 2016 Sci. Rep. 6 22414
|
[41] |
Kulyuk L, Charron L and Fortin E 2003 Phys. Rev. B 68 075314
|
[42] |
Zhang Y, Ugeda M M, Jin C H, Shi S F, Bradley A J, Martín-Recio A and Zhou B 2016 Nano Lett. 16 2485
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|