CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES |
Prev
Next
|
|
|
Surface Majorana flat bands in j=3/2 superconductors with singlet-quintet mixing |
Jiabin Yu(于家斌), Chao-Xing Liu(刘朝星) |
Department of Physics, the Pennsylvania State University, University Park, PA 16802, USA |
|
|
Abstract Recent experiments[Science Advances 4 eaao4513 (2018)] have revealed the evidence of nodal-line superconductivity in half-Heusler superconductors, e.g., YPtBi. Theories have suggested the topological nature of such nodal-line superconductivity and proposed the existence of surface Majorana flat bands on the (111) surface of half-Heusler superconductors. Due to the divergent density of states of the surface Majorana flat bands, the surface order parameter and the surface impurity play essential roles in determining the surface properties. We study the effect of the surface order parameter and the surface impurity on the surface Majorana flat bands of half-Heusler superconductors based on the Luttinger model. To be specific, we consider the topological nodal-line superconducting phase induced by the singlet-quintet pairing mixing, classify all the possible translationally invariant order parameters for the surface states according to irreducible representations of C3v point group, and demonstrate that any energetically favorable order parameter needs to break the time-reversal symmetry. We further discuss the energy splitting in the energy spectrum of surface Majorana flat bands induced by different order parameters and non-magnetic or magnetic impurities. We propose that the splitting in the energy spectrum can serve as the fingerprint of the pairing symmetry and mean-field order parameters. Our theoretical prediction can be examined in the future scanning tunneling microscopy experiments.
|
Received: 16 October 2019
Revised: 25 November 2019
Accepted manuscript online:
|
PACS:
|
74.20.Rp
|
(Pairing symmetries (other than s-wave))
|
|
74.55.+v
|
(Tunneling phenomena: single particle tunneling and STM)
|
|
Corresponding Authors:
Chao-Xing Liu
E-mail: cxl56@psu.edu
|
Cite this article:
Jiabin Yu(于家斌), Chao-Xing Liu(刘朝星) Surface Majorana flat bands in j=3/2 superconductors with singlet-quintet mixing 2020 Chin. Phys. B 29 017402
|
[1] |
Kim H, Wang K, Nakajima Y, Hu R, Ziemak S, Syers P, Wang L, Hodovanets H, Denlinger J D and Brydon P M 2018 Science Advances 4 eaao4513
|
[2] |
Graf T, Parkin S S and Felser C 2011 IEEE Trans. Magn. 47 367
|
[3] |
Lin H, Wray L A, Xia Y, Xu S, Jia S, Cava R J, Bansil A and Hasan M Z 2010 Nat. Materials 9 546
|
[4] |
Chadov S, Qi X, Kübler J, Fecher G H, Felser C and Zhang S C 2010 Nat. Materials 9 541
|
[5] |
Xiao D, Yao Y, Feng W, Wen J, Zhu W, Chen X Q, Stocks G M and Zhang Z 2010 Phys. Rev. Lett. 105 096404
|
[6] |
Al-Sawai W, Lin H, Markiewicz R S, Wray L A, Xia Y, Xu S Y, Hasan M Z and Bansil A 2010 Phys. Rev. B 82 125208
|
[7] |
Yan B and de Visser A 2014 MRS Bull. 39 859
|
[8] |
Liu Z K, Yang L X, Wu S C, Shekhar C, Jiang J, Yang H F, Zhang Y, Mo S K, Hussain Z, Yan B, Felser C and Chen Y L 2016 Nat. Commun. 7 12924 article
|
[9] |
Logan J A, Patel S J, Harrington S D, Polley C M, Schultz B D, Balasubramanian T and Palmstrom C J 2016 Nat. Commun. 7 11993
|
[10] |
Cano J, Bradlyn B, Wang Z, Hirschberger M, Ong N and Bernevig B 2017 Phys. Rev. B 95 161306
|
[11] |
Ruan, J, Jian S K, Yao H, Zhang H, Zhang S C and Xing D 2016 Nature Commun. 7 11136
|
[12] |
Hirschberger M, Kushwaha S, Wang Z, Gibson Q, Liang S, Belvin C A, Bernevig B A, Cava R J and Ong N P 2016 Nat Mater 15 1161-1165 ISSN 1476-1122 letter
|
[13] |
Shekhar C, Nayak A K, Singh S, Kumar N, Wu S C, Zhang Y, Komarek A C, Kampert E, Skourski Y and Wosnitza J 2016 arXiv:1604.01641 [cond-mat.mtrl-sci]
|
[14] |
Suzuki T, Chisnell R, Devarakonda A, Liu Y T, Feng W, Xiao D, Lynn J and Checkelsky J 2016 Nat. Phys. 12 1119
|
[15] |
Yang H, Yu J, Parkin S S P, Felser C, Liu C X and Yan B 2017 Phys. Rev. Lett. 119 136401
|
[16] |
Liu J, Liu H, Cao G and Zhou Z 2018 arXiv:1808.04748 [cond-mat.mtrl-sci]
|
[17] |
Pan Y, Nikitin A M, Bay T V, Huang Y K, Paulsen C, Yan B H and de Visser A 2013 EPL (Europhys. Lett.) 104 27001
|
[18] |
Gofryk K, Kaczorowski D, Plackowski T, Leithe-Jasper A and Grin Y 2011 Phys. Rev. B 84 035208
|
[19] |
Müller R A, Lee-Hone N R, Lapointe L, Ryan D H, Pereg-Barnea T, Bianchi A D, Mozharivskyj Y and Flacau R 2014 Phys. Rev. B 90 041109
|
[20] |
Nikitin A M, Pan Y, Mao X, Jehee R, Araizi G K, Huang Y K, Paulsen C, Wu S C, Yan B H and de Visser A 2015 J. Phys.: Condens. Matter 27 275701
|
[21] |
Nakajima Y, Hu R, Kirshenbaum K, Hughes A, Syers P, Wang X, Wang K, Wang R, Saha S R and Pratt D 2015 Sci. Advances 1 e1500242
|
[22] |
Pavlosiuk O, Kaczorowski D, Fabreges X, Gukasov A and Wiśniewski P 2016 Sci. Rep. 6 18797
|
[23] |
Pavlosiuk O, Kaczorowski D and Wiśniewski P 2016 Acta Phys. Pol. A 130 573
|
[24] |
Yu J, Yan B and Liu C X 2017 Phys. Rev. B 95 235158
|
[25] |
Pavlosiuk O, Fabreges X, Gukasov A, Meven M, Kaczorowski D and Wiśniewski P 2018 Physica B 536 56
|
[26] |
Goll G, Marz M, Hamann A, Tomanic T, Grube K, Yoshino T and Takabatake T 2008 Physica B 403 1065
|
[27] |
Butch N P, Syers P, Kirshenbaum K, Hope A P and Paglione J 2011 Phys. Rev. B 84 220504
|
[28] |
Bay T V, Naka T, Huang Y K and de Visser A 2012 Phys. Rev. B 86 064515
|
[29] |
Tafti F F, Fujii T, Juneau-Fecteau A, René de Cotret S, Doiron-Leyraud N, Asamitsu A and Taillefer L 2013 Phys. Rev. B 87 184504
|
[30] |
Xu G, Wang W, Zhang X, Du Y, Liu E, Wang S, Wu G, Liu Z and Zhang X X 2014 Sci. Rep. 4 5709
|
[31] |
Pavlosiuk O, Kaczorowski D and Wiśniewski P 2015 Sci. Rep. 5 9158
|
[32] |
Meinert M 2016 Phys. Rev. Lett. 116 137001
|
[33] |
Xiao H, Hu T, Liu W, Zhu Y L, Li P G, Mu G, Su J, Li K and Mao Z Q 2018 Phys. Rev. B 97 224511
|
[34] |
Brydon P M R, Wang L, Weinert M and Agterberg D F 2016 Phys. Rev. Lett. 116 177001
|
[35] |
Kawakami T, Okamura T, Kobayashi S and Sato M 2018 Phys. Rev. X 8 041026
|
[36] |
Wu C 2006 Mod. Phys. Lett. B 20 1707
|
[37] |
Kuzmenko I, Kuzmenko T, Avishai Y and Sato M 2018 Phys. Rev. B 98 165139
|
[38] |
Yang W, Xiang T and Wu C 2017 Phys. Rev. B 96 144514
|
[39] |
Timm C, Schnyder A P, Agterberg D F and Brydon P M R 2017 Phys. Rev. B 96 094526
|
[40] |
Yu J and Liu C X 2018 Phys. Rev. B 98 104514
|
[41] |
Wang Q Z, Yu J and Liu C X 2018 Phys. Rev. B 97 224507
|
[42] |
Yu J and Liu C X 2018 arXiv:1809.04736 [cond-mat.supr-con]
|
[43] |
Roy B, Ghorashi S A A, Foster M S and Nevidomskyy A H 2018 Phys. Rev. B 99 054505
|
[44] |
Boettcher I and Herbut I F 2018 Phys. Rev. Lett. 120 057002
|
[45] |
Yang W, Li Y and Wu C 2016 Phys. Rev. Lett. 117 075301
|
[46] |
Venderbos J W F, Savary L, Ruhman J, Lee P A and Fu L 2018 Phys. Rev. X 8 011029
|
[47] |
Savary L, Ruhman J, Venderbos J W F, Fu L and Lee P A 2017 Phys. Rev. B 96 214514
|
[48] |
Ghorashi S A A, Davis S and Foster M S 2017 Phys. Rev. B 95 144503
|
[49] |
Brydon P, Agterberg D, Menke H and Timm C 2018 Phys. Rev. B 98 224509
|
[50] |
Yada K, Sato M, Tanaka Y and Yokoyama T 2011 Phys. Rev. B 83 064505
|
[51] |
Li Y, Wang D and Wu C 2013 New J. Phys. 15 085002
|
[52] |
Potter A C and Lee P A 2014 Phys. Rev. Lett. 112 117002
|
[53] |
Timm C, Rex S and Brydon P M R 2015 Phys. Rev. B 91 180503
|
[54] |
Hofmann J S, Assaad F F and Schnyder A P 2016 Phys. Rev. B 93 201116
|
[55] |
Ikegaya S, Asano Y and Tanaka Y 2015 Phys. Rev. B 91 174511
|
[56] |
Ikegaya S and Asano Y 2017 Phys. Rev. B 95 214503
|
[57] |
Ikegaya S, Kobayashi S and Asano Y 2018 Phys. Rev. B 97 174501
|
[58] |
Luttinger J M 1956 Phys. Rev. 102 1030
|
[59] |
Winkler R, Papadakis S, De Poortere E and Shayegan M 2003 Spin-Orbit Coupling Two-Dimensional Electron. Hole Syst. Vol. 41 (Berlin: Springer)
|
[60] |
Blount E I 1985 Phys. Rev. B 32 2935
|
[61] |
Ueda K and Rice T M 1985 Phys. Rev. B 31 7114
|
[62] |
Volovik G and Gorkov L 1985 Zh. Eksperimentalnoi I Teor. Fiz. 88 1412
|
[63] |
Sigrist M and Ueda K 1991 Rev. Mod. Phys. 63 239
|
[64] |
Annett J F 1990 Adv. Phys. 39 83
|
[65] |
Annett J, Goldenfeld N and Renn S R 1991 Phys. Rev. B 43 2778
|
[66] |
Annett J F, Goldenfeld N and Leggett A J 1996 J. Low Temp. Phys. 105 473
|
[67] |
Tinkham M 1996 Introduction to superconductivity (New York: McGraw-Hill)
|
[68] |
Bi Z, Yuan N F Q and Fu L 2019 Phys. Rev. B 100 035448
|
[69] |
Sato M, Tanaka Y, Yada K and Yokoyama T 2011 Phys. Rev. B 83 224511
|
[70] |
Murakami S, Nagosa N and Zhang S C 2004 Phys. Rev. B 69 235206
|
[71] |
Aroyo M I, Kirov A, Capillas C, Perez-Mato J and Wondratschek H 2006 Acta Crystallogr. Sect. A 62 115
|
[72] |
Gell-Mann M 1962 Phys. Rev. 125 1067
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|