SPECIAL TOPIC—60th Anniversary of Department of Physics of Nanjing Normal University |
Prev
Next
|
|
|
Bloch oscillation of Weyl metal along synthetic dimensions |
Ye Xiong(熊烨) |
Department of Physics and Institute of Theoretical Physics, Nanjing Normal University, Nanjing 210023, China |
|
|
Abstract Synthetic dimensions in time (Sambe space) can be utilized in a periodic time-dependent system. By subjecting the system into a time-periodic potential and measuring the physical quantities at distinct time in one period, one is able to simulate the models in higher dimension. To verify this approach, we show that the Bloch oscillation of wave packets along the magnetic field in a three-dimensional (3D) Weyl metal can be simulated on a two-dimensional (2D) insulator. Different from the chiral anomaly, this Bloch oscillation is anisotropic when the initial wave packet is not on the 0-th Landau level.
|
Received: 22 August 2018
Revised: 12 November 2018
Accepted manuscript online:
|
PACS:
|
67.85.-d
|
(Ultracold gases, trapped gases)
|
|
03.75.Lm
|
(Tunneling, Josephson effect, Bose-Einstein condensates in periodic potentials, solitons, vortices, and topological excitations)
|
|
74.20.Rp
|
(Pairing symmetries (other than s-wave))
|
|
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 11774177). |
Corresponding Authors:
Ye Xiong
E-mail: xiongye@njnu.edu.cn
|
Cite this article:
Ye Xiong(熊烨) Bloch oscillation of Weyl metal along synthetic dimensions 2018 Chin. Phys. B 27 126701
|
[1] |
Wu Z, Zhang L, Sun W, et al. 2016 Science 354 83
|
[2] |
Eriksson E, Riwar R P, Houzet M, Meyer J S and Nazarov Y V 2017 Phys. Rev. B 95 075417
|
[3] |
Meyer J S and Houzet M 2017 Phys. Rev. Lett. 119 136807
|
[4] |
Ozawa T and Carusotto I 2017 Phys. Rev. Lett. 118 013601
|
[5] |
Ozawa T, Price H M, Goldman N, Zilberberg O and Carusotto I 2016 Phys. Rev. A 93 043827
|
[6] |
Riwar R P, Houzet M, Meyer J S and Nazarov Y V 2016 Nat. Commun. 7 11167
|
[7] |
Schroer M, Kolodrubetz M, Kindel W, et al. 2014 Phys. Rev. Lett. 113 050402
|
[8] |
Wang Q, Xiao M, Liu H, Zhu S and Chan C 2017 Phys. Rev. X 7 031032
|
[9] |
Yu J, Xu Z F, Lu R and You L 2016 Phys. Rev. Lett. 116 143003
|
[10] |
Zhang D W and Yang X C 2016 Quantum Information Processing 15 1909
|
[11] |
Harper P G 1955 Proc. Phys. Soc. London Sect. A 68 874
|
[12] |
Lau A and Ortix C 2015 Phys. Rev. Lett. 115 216805
|
[13] |
Aubry S and Andr G 1980 Ann. Isr. Phys. Soc. 3 133
|
[14] |
Price H M, Zilberberg O, Ozawa T, Carusotto I and Goldman N 2015 Phys. Rev. Lett. 115 195303
|
[15] |
Price H M, Zilberberg O, Ozawa T, Carusotto I and Goldman N 2016 Phys. Rev. B 93 245113
|
[16] |
Else D V, Bauer B and Nayak C 2016 Phys. Rev. Lett. 117 090402
|
[17] |
Erker P, Mitchison M T, Silva R, et al. 2017 Phys. Rev. X 7 031022
|
[18] |
Li T, Gong Z X, Yin Z Q, et al. 2012 Phys. Rev. Lett. 109 163001
|
[19] |
Shapere A and Wilczek F 2012 Phys. Rev. Lett. 109 160402
|
[20] |
Watanabe H and Oshikawa M 2015 Phys. Rev. Lett. 114 251603
|
[21] |
Budich J C, Hu Y and Zoller P 2017 Phys. Rev. Lett. 118 105302
|
[22] |
Dehghani H and Mitra A 2016 Phys. Rev. B 93 205437
|
[23] |
Else D, Bauer B and Nayak C 2017 Phys. Rev. X 7 011026
|
[24] |
Floquet G 1883 On Linear Differential Equation with Periodic Coefficients (Annales Scientifiques de l'cole Normale Suprieure)
|
[25] |
Harper F and Roy R 2017 Phys. Rev. Lett. 118 115301
|
[26] |
Khemani V, Lazarides A, Moessner R and Sondhi S L 2016 Phys. Rev. Lett. 116 250401
|
[27] |
Kibis O V, Dini K, Iorsh I V and Shelykh I A 2017 Phys. Rev. B 95 125401
|
[28] |
Kolodrubetz M, Fregoso B M and Moore J E 2016 Phys. Rev. B 94 195124
|
[29] |
Lellouch S, Bukov M, Demler E and Goldman N 2017 Phys. Rev. X 7 021015
|
[30] |
Leykam D, Rechtsman M C and Chong Y D 2016 Phys. Rev. Lett. 117 013902
|
[31] |
Lindner N H, Berg E and Rudner M S 2017 Phys. Rev. X 7 011018
|
[32] |
Martin I, Refael G and Halperin B 2017 Phys. Rev. X 7 041008
|
[33] |
Mori T, Kuwahara T and Saito K 2016 Phys. Rev. Lett. 116 120401
|
[34] |
Morimoto T, Po H C and Vishwanath A 2017 Phys. Rev. B 95 195155
|
[35] |
Nandy S, Sen A and Sen D 2017 Phys. Rev. X 7 031034
|
[36] |
Po H C, Fidkowski L, Morimoto T, Potter A C and Vishwanath A 2016 Phys. Rev. X 6 041070
|
[37] |
Potirniche I D, Potter A C, Schleier M, Vishwanath A and Yao N Y 2017 Phys. Rev. Lett. 119 123601
|
[38] |
Potter A C and Morimoto T 2017 Phys. Rev. B 95 155126
|
[39] |
Restrepo S, Cerrillo J, Bastidas V M, Angelakis D G and Brandes T 2016 Phys. Rev. Lett. 117 250401
|
[40] |
Roy R and Harper F 2016 Phys. Rev. B 94 125105
|
[41] |
Roy R and Harper F 2017 Phys. Rev. B 95 195128
|
[42] |
Roy R and Harper F 2017 Phys. Rev. B 96 155118
|
[43] |
Von Keyserlingk C W and Sondhi S L 2016 Phys. Rev. B 93 245145
|
[44] |
Novičenko V, Anisimovas E and Juzeliūnas G 2017 Phys. Rev. A 95 023615
|
[45] |
Sambe H 1973 Phys. Rev. A 7 2203
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|