Novel 0-π transitions in Josephson junctions between noncentrosymmetric superconductors
Jun-Feng Liu(刘军丰)1, Huan Zhang(张欢)1, Jun Wang(汪军)2
1. Department of Physics, South University of Science and Technology of China, Shenzhen 518055, China; 2. Department of Physics, Southeast University, Nanjing 210096, China
Abstract We study the Josephson effect between two noncentrosymmetric superconductors (NCSs) with opposite polarization vectors of Rashba spin-orbit coupling (RSOC). We find a 0-π transition driven by the triplet-singlet ratio of NCSs. Different from conventional 0-π transitions, the Andreev bound states change their energy range instead of phase shift in the 0-π transition found here. This novel property results in a feature that the critical current becomes almost zero at the transition point, not only a minimum. Furthermore, when the directions of RSOC polarization vectors are the same in two NCSs, the similar effect can also be found in the presence of a perpendicular exchange field or a Dresselhause spin-orbit coupling in the interlayer. We find novel oscillations of critical current without 0-π transition. These novel 0-π transitions or oscillations of critical current present new understanding of the Josephson effect and can also serve as a tool to determine the unknown triplet-singlet ratio of NCSs.
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.