Please wait a minute...
Chin. Phys. B, 2020, Vol. 29(6): 067401    DOI: 10.1088/1674-1056/ab8888

Quasiparticle interference testing the possible pairing symmetry in Sr2RuO4

Cong-Cong Zhang(张聪聪)1, Jin-Hua Sun(孙金华)1, Yang Yang(杨阳)2, Wan-Sheng Wang(王万胜)1,3
1 Department of Physics, Ningbo University, Ningbo 315211, China;
2 College of Physics and Electronic Engineering, Zhengzhou University of Light Industry, Zhengzhou 450002, China;
3 School of Engineering, Lishui University, Lishui 323000, China
Abstract  The quasiparticle interference (QPI) patterns of the superconducting state in Sr2RuO4 are theoretically studied by taking into account the spin-orbital coupling and two different pairing modes, chiral p-wave pairing and equal d-wave pairing, in order to propose an experimental method to test them. Both of the QPI spectra for the two pairing modes have clearly peaks evolving with energy, and their locations can be determined from the tips of the constant energy contour. But the number, location, and evolution of these peaks with energy are different between the two pairing modes. The different behaviors of the QPI patterns in these two pairing modes may help to resolve whether Sr2RuO4 is a chiral p-wave or d-wave superconductor.
Keywords:  Sr2RuO4      quasiparticle interference      chiral p-wave      d-wave  
Received:  27 December 2019      Revised:  19 March 2020      Accepted manuscript online: 
PACS:  74.20.-z (Theories and models of superconducting state)  
  74.20.Rp (Pairing symmetries (other than s-wave))  
  74.70.-b (Superconducting materials other than cuprates)  
Fund: Project supported by the National Natural Science Foundataion of China (Grant Nos. 11604168, 11604166, and 11604303). WSW also acknowledges the supports by K. C. Wong Magna Fund in Ningbo University.
Corresponding Authors:  Wan-Sheng Wang     E-mail:

Cite this article: 

Cong-Cong Zhang(张聪聪), Jin-Hua Sun(孙金华), Yang Yang(杨阳), Wan-Sheng Wang(王万胜) Quasiparticle interference testing the possible pairing symmetry in Sr2RuO4 2020 Chin. Phys. B 29 067401

[1] Ishida K, Mukuda H, Kitaoka Y, Asayama K, Mao Z Q, Mori Y and Maeno Y 1998 Nature 396 658
[2] Murakawa H, Ishida K, Kitagawa K, Mao Z Q and Maeno Y 2004 Phys. Rev. Lett. 93 167004
[3] Ishida K, Manago M, Yamanaka T, Fukazawa H, Mao Z Q, Maeno Y and Miyake K 2015 Phys. Rev. B 92 100502(R)
[4] Manago M, Ishida K, Mao Z Q and Maeno Y 2016 Phys. Rev. B 94 180507(R).
[5] Duffy J A, Hayden S M, Maeno Y, Mao Z Q, Kulda J and McIntyre G J 2000 Phys. Rev. Lett. 85 5412
[6] Luke G M, Fudamoto Y, Kojima K M, Larkin M I, Merrin J, Nachumi B, Uemura Y J, Maeno Y, Mao Z Q, Mori Y Nakamura H and Sigrist M 1998 Nature 39 558
[7] Xia J, Maeno Y, Beyersdorf P T, Fejer M M and Kapitulnik A 2006 Phys. Rev. Lett. 97 167002
[8] Mackenzie A P and Maeno Y, 2003 Rev. Mod. Phys. 75 657
[9] Kallin C 2012 Rep. Prog. Phys. 75 042501
[10] Rice T M and Sigrist M 1995 J. Phys. Condens. Matter 7 L643
[11] NishiZaki S, Maeno Y and Mao Z Q 1999 J. Low Temp. Phys. 117 1581
[12] NishiZaki S, Maeno Y and Mao Z Q 2000 J. Phys. Soc. Jpn. 69 572
[13] Deguchi K, Mao Z Q, Yaguchi H and Maeno Y 2004 Phys. Rev. Lett. 92 047002
[14] Bonalde I, Yanoff B D, Salamon M B, Van Harlingen D J, Chia E M E, Mao Z Q and Maeno Y 2000 Phys. Rev. Lett. 85 4775
[15] Ishida K, Mukuda H, Kitaoka Y, Mao Z Q, Mori Y and Maeno Y 2000 Phys. Rev. Lett. 84 5387
[16] Suderow H, Brison J P, Flouquet J, Tyler A W and Maeno Y 1998 J. Phys. Condens. Matter 10 L597
[17] Suzuki M, Tanatar M A, Kikugawa N, Mao Z Q, Maeno Y and Ishiguro T 2002 Phys. Rev. Lett. 88 227004
[18] Hassinger E, Bourgeois-Hope P, Taniguchi H, René de Cotret S, Grissonnanche G, Anwar M S, Maeno Y, Doiron-Leyraud N and Taillefer L 2017 Rhys. Rev. X 7 011032
[19] Lupien C, MacFarlane W A, Proust C, Taillefer L, Mao Z Q and Maeno Y 2001 Phys. Rev. Lett. 86 5986
[20] Zhitomirsky M E and Rice T M 2001 Phys. Rev. Lett. 87 057001
[21] Nomura T 2005 J. Phys. Soc. Jpn. 74 1818
[22] Raghu S, Kapitulnik A and Kivelson S A 2010 Phys. Rev. Lett. 105 136401
[23] Miyake K and Narikiyo O 1999 Phys. Rev. Lett. 83 1423
[24] Wang Q H, Platt C, Yang Y, Honerkamp C, Zhang F C, Hanke W, Rice T M and Thomale R 2013 Europhys. Lett. 104 17013
[25] Hasegawa Y, Machida K and Ozaki M 2000 J. Phys. Soc. Jpn. 69 336
[26] Graf M J and Balatsky A V 2000 Phys. Rev. B 62 9697
[27] Dahm T, Won H and Maki K 2000 cond-mat/0006301
[28] Wang W S, Zhang C C, Zhang F C and Wang Q H 2019 Phys. Rev. Lett 122 027002
[29] Pustogow A, Luo Y K, Chronister A, Su Y S, Sokolov S, Jerzembeck F, Mackenzie A P, Hicks C W, Nikugawa N, Raghu S, Bauer E D and Brown S E 2019 Nature 574 72
[30] Ishida K, Manago M and Maeno Y 2019 arXiv:1907.12236
[31] Kashiwaya S, Yada K, Tanaka Y, Saitoh K, Kashiwaya H, Koyanagi M, Sato M and Maeno Y 2019 Phys. Rev. B 100 094530
[32] Balatsky A V, Vekhter I and Zhu J X 2006 Rev. Mod. Phys. 78 373
[33] Wang Q H and Lee D H 2003 Phys. Rev. B 67 020511
[34] Hoffman J E, McElroy K, Lee D H, Lang K M, Eisaki H, Uchida S and Davis J C 2002 Science 297 1148
[35] Gao Y, Zhou T, Huang H, Ting C S, Tong P and Wang Q H 2013 Phys. Rev. B 88 094514
[36] Akbari A and Thalmeier P 2013 Phys. Rev. B 88 134519
[37] Damascelli A, Lu D H, Shen K M, Armitage N P, Ronning F, Feng D L, Kim C, Shen Z X, Kimura T, Tokura Y, Mao Z Q and Maeno Y 2000 Phys. Rev. Lett. 85 5194
[38] Haverkort M W, Elfimov I S, Tjeng L H, Sawatzky G A and Damascelli A 2008 Phys. Rev. Lett. 101 026406
[39] Veenstra C N, Zhu Z H, Ludbrook B, Capsoni M, Levy G, Nicolaou A, Rosen J A, Comin R, Kittaka S, Maeno Y, Elfimov I S and Damascelli A 2013 Phys. Rev. Let. 110 097004
[40] Veenstra C N, Zhu Z H, Raichle M, Ludbrook B M, Nicolaou A, Slomski B, Landolt G, Kittaka S, Maeno Y, Dil J H, Elfimov I S, Haverkort M W and Damascelli A 2014 Phys. Rev. Lett. 112 127002
[41] Zabolotnyy V B, Evtushinsky D V, Kordyuk A A, Kim T K, Carleschi E, Doyle B P, Fittipaldi R, Cuoco M, Vecchione A and Borisenko S V 2019 Phys. Rev. X 9 021048
[42] Tamai A, Zingl M, Rozbicki E, Cappelli E, Riccò S, de la Torre A, Walker S M, Bruno F Y, King P D C, Meevasana W, Shi M, Radović M, Plumb N C, Gibbs A S, Mackenzie A P, Berthod C, Strand H U R, Kim M, Georges A and Baumberger F 2019 Phys. Rev. X 9 021048
[1] Sensitivity improvement of aluminum-based far-ultraviolet nearly guided-wave surface plasmon resonance sensor
Tianqi Li(李天琦), Shujing Chen(陈淑静), and Chengyou Lin(林承友). Chin. Phys. B, 2022, 31(12): 124208.
[2] Interface effect on superlattice quality and optical properties of InAs/GaSb type-II superlattices grown by molecular beam epitaxy
Zhaojun Liu(刘昭君), Lian-Qing Zhu(祝连庆), Xian-Tong Zheng(郑显通), Yuan Liu(柳渊), Li-Dan Lu(鹿利单), and Dong-Liang Zhang(张东亮). Chin. Phys. B, 2022, 31(12): 128503.
[3] Theoretical study of (e, 2e) triple differential cross sections of pyrimidine and tetrahydrofurfuryl alcohol molecules using multi-center distorted-wave method
Yiao Wang(王亦傲), Zhenpeng Wang(王振鹏), Maomao Gong(宫毛毛), Chunkai Xu(徐春凯), and Xiangjun Chen(陈向军). Chin. Phys. B, 2022, 31(1): 010202.
[4] Electron-impact ionization cross section calculations for lithium-like ions
Guo-Jie Bian(卞国杰), Jyh-Ching Chang(张稚卿), Ke-Ning Huang(黄克宁), Chen-Sheng Wu(武晨晟), Yong-Jun Cheng(程勇军), Kai Wang(王凯), and Yong Wu(吴勇). Chin. Phys. B, 2022, 31(1): 013401.
[5] Superfluid phases and excitations in a cold gas of d-wave interacting bosonic atoms and molecules
Zehan Li(李泽汉), Jian-Song Pan, and W Vincent Liu. Chin. Phys. B, 2021, 30(6): 066703.
[6] Analysis of relative wavelength response characterization and its effects on scanned-WMS gas sensing
Dao Zheng(郑道), Zhi-Min Peng(彭志敏), Yan-Jun Ding(丁艳军), and Yan-Jun Du(杜艳君). Chin. Phys. B, 2021, 30(4): 044210.
[7] A review of some new perspectives on the theory of superconducting Sr2RuO4
Wen Huang(黄文). Chin. Phys. B, 2021, 30(10): 107403.
[8] Unconventional chiral d-wave superconducting state in strained graphene
Feng Xu(徐峰), Lei Zhang(张磊). Chin. Phys. B, 2019, 28(11): 117403.
[9] Performance of dual-band short- or mid-wavelength infrared photodetectors based on InGaAsSb bulk materials and InAs/GaSb superlattices
Yao-yao Sun(孙姚耀), Yue-xi Lv(吕粤希), Xi Han(韩玺), Chun-yan Guo(郭春妍), Zhi Jiang(蒋志), Hong-yue Hao(郝宏玥), Dong-wei Jiang(蒋洞微), Guo-wei Wang(王国伟), Ying-qiang Xu(徐应强), Zhi-chuan Niu(牛智川). Chin. Phys. B, 2017, 26(9): 098506.
[10] Etching mask optimization of InAs/GaSb superlattice mid-wavelength infared 640×512 focal plane array
Hong-Yue Hao(郝宏玥), Wei Xiang(向伟), Guo-Wei Wang(王国伟), Ying-Qiang Xu(徐应强), Xi Han(韩玺), Yao-Yao Sun(孙瑶耀), Dong-Wei Jiang(蒋洞微), Yu Zhang(张宇), Yong-Ping Liao(廖永平), Si-Hang Wei(魏思航), Zhi-Chuan Niu(牛智川). Chin. Phys. B, 2017, 26(4): 047303.
[11] Projectile angular-differential cross sections for single electron transfer in fast He+-He collisions
Ebrahim Ghanbari-Adivi, Hoda Ghavaminia. Chin. Phys. B, 2015, 24(3): 033401.
[12] Electron correlation in fast ion-impact single ionization of helium atoms
E. Ghanbari-Adivi, S. Eskandari. Chin. Phys. B, 2015, 24(1): 013401.
[13] Electron impact ionization of neon and neonic ions under distorted-wave Born approximation
Zhou Li-Xia (周丽霞), Yan You-Guo (燕友果). Chin. Phys. B, 2014, 23(5): 053402.
[14] Polarization effect in (e, 2e) reaction process for Ar (3s) in coplanar asymmetric geometry
Zhou Li-Xia (周丽霞), Wang Dian-Sheng (王殿生), Yan You-Guo (燕友果), Wang Cai-Ling (王彩玲). Chin. Phys. B, 2014, 23(11): 113402.
[15] Cross section for impact single ionization of B2+ by H+
Ye Dan-Dan (叶丹丹), Qi Yue-Ying (祁月盈), Hu Ya-Hua (胡亚华), Ning Li-Na (宁丽娜). Chin. Phys. B, 2013, 22(5): 053401.
No Suggested Reading articles found!