CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES |
Prev
Next
|
|
|
Quasiparticle interference testing the possible pairing symmetry in Sr2RuO4 |
Cong-Cong Zhang(张聪聪)1, Jin-Hua Sun(孙金华)1, Yang Yang(杨阳)2, Wan-Sheng Wang(王万胜)1,3 |
1 Department of Physics, Ningbo University, Ningbo 315211, China; 2 College of Physics and Electronic Engineering, Zhengzhou University of Light Industry, Zhengzhou 450002, China; 3 School of Engineering, Lishui University, Lishui 323000, China |
|
|
Abstract The quasiparticle interference (QPI) patterns of the superconducting state in Sr2RuO4 are theoretically studied by taking into account the spin-orbital coupling and two different pairing modes, chiral p-wave pairing and equal d-wave pairing, in order to propose an experimental method to test them. Both of the QPI spectra for the two pairing modes have clearly peaks evolving with energy, and their locations can be determined from the tips of the constant energy contour. But the number, location, and evolution of these peaks with energy are different between the two pairing modes. The different behaviors of the QPI patterns in these two pairing modes may help to resolve whether Sr2RuO4 is a chiral p-wave or d-wave superconductor.
|
Received: 27 December 2019
Revised: 19 March 2020
Accepted manuscript online:
|
PACS:
|
74.20.-z
|
(Theories and models of superconducting state)
|
|
74.20.Rp
|
(Pairing symmetries (other than s-wave))
|
|
74.70.-b
|
(Superconducting materials other than cuprates)
|
|
Fund: Project supported by the National Natural Science Foundataion of China (Grant Nos. 11604168, 11604166, and 11604303). WSW also acknowledges the supports by K. C. Wong Magna Fund in Ningbo University. |
Corresponding Authors:
Wan-Sheng Wang
E-mail: wangwansheng@nbu.edu.cn
|
Cite this article:
Cong-Cong Zhang(张聪聪), Jin-Hua Sun(孙金华), Yang Yang(杨阳), Wan-Sheng Wang(王万胜) Quasiparticle interference testing the possible pairing symmetry in Sr2RuO4 2020 Chin. Phys. B 29 067401
|
[1] |
Ishida K, Mukuda H, Kitaoka Y, Asayama K, Mao Z Q, Mori Y and Maeno Y 1998 Nature 396 658
|
[2] |
Murakawa H, Ishida K, Kitagawa K, Mao Z Q and Maeno Y 2004 Phys. Rev. Lett. 93 167004
|
[3] |
Ishida K, Manago M, Yamanaka T, Fukazawa H, Mao Z Q, Maeno Y and Miyake K 2015 Phys. Rev. B 92 100502(R)
|
[4] |
Manago M, Ishida K, Mao Z Q and Maeno Y 2016 Phys. Rev. B 94 180507(R).
|
[5] |
Duffy J A, Hayden S M, Maeno Y, Mao Z Q, Kulda J and McIntyre G J 2000 Phys. Rev. Lett. 85 5412
|
[6] |
Luke G M, Fudamoto Y, Kojima K M, Larkin M I, Merrin J, Nachumi B, Uemura Y J, Maeno Y, Mao Z Q, Mori Y Nakamura H and Sigrist M 1998 Nature 39 558
|
[7] |
Xia J, Maeno Y, Beyersdorf P T, Fejer M M and Kapitulnik A 2006 Phys. Rev. Lett. 97 167002
|
[8] |
Mackenzie A P and Maeno Y, 2003 Rev. Mod. Phys. 75 657
|
[9] |
Kallin C 2012 Rep. Prog. Phys. 75 042501
|
[10] |
Rice T M and Sigrist M 1995 J. Phys. Condens. Matter 7 L643
|
[11] |
NishiZaki S, Maeno Y and Mao Z Q 1999 J. Low Temp. Phys. 117 1581
|
[12] |
NishiZaki S, Maeno Y and Mao Z Q 2000 J. Phys. Soc. Jpn. 69 572
|
[13] |
Deguchi K, Mao Z Q, Yaguchi H and Maeno Y 2004 Phys. Rev. Lett. 92 047002
|
[14] |
Bonalde I, Yanoff B D, Salamon M B, Van Harlingen D J, Chia E M E, Mao Z Q and Maeno Y 2000 Phys. Rev. Lett. 85 4775
|
[15] |
Ishida K, Mukuda H, Kitaoka Y, Mao Z Q, Mori Y and Maeno Y 2000 Phys. Rev. Lett. 84 5387
|
[16] |
Suderow H, Brison J P, Flouquet J, Tyler A W and Maeno Y 1998 J. Phys. Condens. Matter 10 L597
|
[17] |
Suzuki M, Tanatar M A, Kikugawa N, Mao Z Q, Maeno Y and Ishiguro T 2002 Phys. Rev. Lett. 88 227004
|
[18] |
Hassinger E, Bourgeois-Hope P, Taniguchi H, René de Cotret S, Grissonnanche G, Anwar M S, Maeno Y, Doiron-Leyraud N and Taillefer L 2017 Rhys. Rev. X 7 011032
|
[19] |
Lupien C, MacFarlane W A, Proust C, Taillefer L, Mao Z Q and Maeno Y 2001 Phys. Rev. Lett. 86 5986
|
[20] |
Zhitomirsky M E and Rice T M 2001 Phys. Rev. Lett. 87 057001
|
[21] |
Nomura T 2005 J. Phys. Soc. Jpn. 74 1818
|
[22] |
Raghu S, Kapitulnik A and Kivelson S A 2010 Phys. Rev. Lett. 105 136401
|
[23] |
Miyake K and Narikiyo O 1999 Phys. Rev. Lett. 83 1423
|
[24] |
Wang Q H, Platt C, Yang Y, Honerkamp C, Zhang F C, Hanke W, Rice T M and Thomale R 2013 Europhys. Lett. 104 17013
|
[25] |
Hasegawa Y, Machida K and Ozaki M 2000 J. Phys. Soc. Jpn. 69 336
|
[26] |
Graf M J and Balatsky A V 2000 Phys. Rev. B 62 9697
|
[27] |
Dahm T, Won H and Maki K 2000 cond-mat/0006301
|
[28] |
Wang W S, Zhang C C, Zhang F C and Wang Q H 2019 Phys. Rev. Lett 122 027002
|
[29] |
Pustogow A, Luo Y K, Chronister A, Su Y S, Sokolov S, Jerzembeck F, Mackenzie A P, Hicks C W, Nikugawa N, Raghu S, Bauer E D and Brown S E 2019 Nature 574 72
|
[30] |
Ishida K, Manago M and Maeno Y 2019 arXiv:1907.12236
|
[31] |
Kashiwaya S, Yada K, Tanaka Y, Saitoh K, Kashiwaya H, Koyanagi M, Sato M and Maeno Y 2019 Phys. Rev. B 100 094530
|
[32] |
Balatsky A V, Vekhter I and Zhu J X 2006 Rev. Mod. Phys. 78 373
|
[33] |
Wang Q H and Lee D H 2003 Phys. Rev. B 67 020511
|
[34] |
Hoffman J E, McElroy K, Lee D H, Lang K M, Eisaki H, Uchida S and Davis J C 2002 Science 297 1148
|
[35] |
Gao Y, Zhou T, Huang H, Ting C S, Tong P and Wang Q H 2013 Phys. Rev. B 88 094514
|
[36] |
Akbari A and Thalmeier P 2013 Phys. Rev. B 88 134519
|
[37] |
Damascelli A, Lu D H, Shen K M, Armitage N P, Ronning F, Feng D L, Kim C, Shen Z X, Kimura T, Tokura Y, Mao Z Q and Maeno Y 2000 Phys. Rev. Lett. 85 5194
|
[38] |
Haverkort M W, Elfimov I S, Tjeng L H, Sawatzky G A and Damascelli A 2008 Phys. Rev. Lett. 101 026406
|
[39] |
Veenstra C N, Zhu Z H, Ludbrook B, Capsoni M, Levy G, Nicolaou A, Rosen J A, Comin R, Kittaka S, Maeno Y, Elfimov I S and Damascelli A 2013 Phys. Rev. Let. 110 097004
|
[40] |
Veenstra C N, Zhu Z H, Raichle M, Ludbrook B M, Nicolaou A, Slomski B, Landolt G, Kittaka S, Maeno Y, Dil J H, Elfimov I S, Haverkort M W and Damascelli A 2014 Phys. Rev. Lett. 112 127002
|
[41] |
Zabolotnyy V B, Evtushinsky D V, Kordyuk A A, Kim T K, Carleschi E, Doyle B P, Fittipaldi R, Cuoco M, Vecchione A and Borisenko S V 2019 Phys. Rev. X 9 021048
|
[42] |
Tamai A, Zingl M, Rozbicki E, Cappelli E, Riccò S, de la Torre A, Walker S M, Bruno F Y, King P D C, Meevasana W, Shi M, Radović M, Plumb N C, Gibbs A S, Mackenzie A P, Berthod C, Strand H U R, Kim M, Georges A and Baumberger F 2019 Phys. Rev. X 9 021048
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|