|
Abstract Specific heat is a powerful tool to investigate the physical properties of condensed materials. Superconducting state is achieved through the condensation of paired electrons, namely, the Cooper pairs. The condensed Cooper pairs have lower entropy compared with that of electrons in normal metal, thus specific heat is very useful in detecting the low lying quasiparticle excitations of the superconducting condensate and the pairing symmetry of the superconducting gap. In this brief overview, we will give an introduction to the specific heat investigation of the physical properties of superconductors. We show the data obtained in cuprate and iron based superconductors to reveal the pairing symmetry of the order parameter.
|
Received: 24 October 2019
Accepted manuscript online:
|
PACS:
|
74.25.Bt
|
(Thermodynamic properties)
|
|
74.20.Rp
|
(Pairing symmetries (other than s-wave))
|
|
74.70.Xa
|
(Pnictides and chalcogenides)
|
|
74.72.-h
|
(Cuprate superconductors)
|
|
Corresponding Authors:
Hai-Hu Wen
E-mail: hhwen@nju.edu.cn
|
Cite this article:
Hai-Hu Wen(闻海虎) Specific heat in superconductors 2020 Chin. Phys. B 29 017401
|
[1] |
Clogston A M 1962 Phys. Rev. Lett. 9 266
|
[2] |
Chandrasekhar B S 1962 Appl. Phys. Lett. 1 7
|
[3] |
Tsuei C C and Kirtley J R 2000 Rev. Mod. Phys. 72 969
|
[4] |
Timusk T and Statt B 1999 Rep. Prog. Phys. 62 61
|
[5] |
Hussey N E 2002 Adv. Phys. 51 1685
|
[6] |
Xiang T 2000 d-wave superconductivity (Beijing: Scientific Publishing Company)
|
[7] |
Wen H H, et al. 2005 Phys. Rev. B 72 134507
|
[8] |
Wen H H, et al. 2004 Phys. Rev. B 70 214505
|
[9] |
Caroli C and de Gennes P G 1964 J. Matricon. Phys. Letts. 9 307
|
[10] |
Gygi F and Schluter M 1991 Phys. Rev. B 43 7609
|
[11] |
Hayashi N and Ichioka M 1998 K. Machida. Phys. Rev. Lett. 80 2921
|
[12] |
Hess H F, et al. 1990 Phys. Rev. Lett. 64 2711
|
[13] |
Volovik G E 1993 JETP Lett. 58 469
|
[14] |
Wen H H 2008 J. Phys. Chem. Solids 69 3236
|
[15] |
Kopnin N B and Volovik G E 1996 JETP Lett. 64 690
|
[16] |
Simon S H and Lee P A 1997 Phys. Rev. Lett. 78 1548
|
[17] |
Volovik G E 1997 JETP Lett. 65 491
|
[18] |
Kübert C and Hirschfeld P J 1998 Solid State Commun. 105 459
|
[19] |
Wang Y, et al. 2007 Phys. Rev. B 76 064512
|
[20] |
Moler K A, et al. 1997 Phys. Rev. B 55 3954
|
[21] |
Garg A, et al. 2008 Nat. Phys. 4 762
|
[22] |
Wen X G and Lee P A 1998 Phys. Rev. Lett. 80 2193
|
[23] |
Norman M R, et al. 1998 Nature 392 157
|
[24] |
Orenstein J and Millis A J 2000 Science 288 480
|
[25] |
Norman M R, et al. 2005 Adv. Phys. 54 715
|
[26] |
Damascelli A, et al. 2003 Rev. Mod. Phys. 75 473
|
[27] |
Ding H, et al. 1996 Nature 382 51
|
[28] |
Sutherland M, et al. 2003 Phys. Rev. B 67 174520
|
[29] |
Alloul H, et al. 1991 Phys. Rev. Lett. 67 3140
|
[30] |
Renner C, et al. 1998 Phys. Rev. Lett. 80 149
|
[31] |
Loram J, et al. 1998 Research Review, University Cambridge (IRC in Superconductivity, London), p. 77
|
[32] |
Yoshida T, et al. 2006 Phys. Rev. B 74 224510
|
[33] |
Junod A 1990 Physical Properties of HTSC II (Ginsberg D, Ed.) (Singapore: World Scientific)
|
[34] |
Phillips N E, et al. 1992 Progress in Low Temperature Physics (Brewer D F, Ed.) (Amsterdam: Elsevier Science Publishers B V)
|
[35] |
Fisher R A, et al. 2007 Handbook of High-Temperature Superconductivity: Theory and Experiment (Schrieffer J R and Brooks J S, Ed.) (Amsterdam: Springer-Verlag)
|
[36] |
Wright D A, et al. 1999 Phys. Rev. Lett. 82 1550
|
[37] |
Chen S J, et al. 1998 Phys. Rev. B 58 R14753
|
[38] |
Fisher R A, et al. 2000 Phys. Rev. B 61 1473
|
[39] |
Nohara M, et al. 2000 J. Phys. Soc. Jpn. 69 1602
|
[40] |
Revaz B, et al. 1998 Phys. Rev. Lett. 80 3364
|
[41] |
Wen H H and Wen X G 2007 Physica C 460–462 28
|
[42] |
Badoux S, et al. 2016 Nature 531 210
|
[43] |
Nakano T, et al. 1998 J. Phys. Soc. Jpn. 67 2622
|
[44] |
Panagopoulos C and Xiang T 1998 Phys. Rev. Lett. 81 2336
|
[45] |
Loram J W, et al. 2001 J. Phys. Chem. Solids 62 59
|
[46] |
Matsuzaki T, et al. 2004 J. Phys. Soc. Jpn. 73 2232
|
[47] |
Tallon J L, et al. 1995 Phys. Rev. B 51 R12911
|
[48] |
Li S L 2011 Annu. Rev. Condens. Matter Phys. 2 121
|
[49] |
Chu C W 2009 Nat. Phys. 5 787
|
[50] |
Hardy F, et al. 2010 Europhys. Lett. 91 47008
|
[51] |
Mu G, et al. 2009 Phys. Rev. B 79 174501
|
[52] |
Zeng B, et al. 2011 Phys. Rev. B 83 144511
|
[53] |
Hardy F, et al. 2013 Phys. Rev. Lett. 111 027002
|
[54] |
Xing J, et al. 2014 Phys. Rev. B 89 140503
|
[55] |
Chen G Y, Zhu X Y, Yang H and Wen H H 2017 Phys. Rev. B 96 064524
|
[56] |
Ding H, et al. 2008 EPL 83 47001
|
[57] |
Shan L, et al. 2011 Phys. Rev. B 83 060510
|
[58] |
Sprau P O, et al. 2017 Science 357 75-80
|
[59] |
Mazin I I, et al. 2008 Phys. Rev. Lett. 101 057003
|
[60] |
Kuroki K, et al. 2008 Phys. Rev. Lett. 101 087004
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|