Special Issue:
Virtual Special Topic — Magnetism and Magnetic Materials
|
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES |
Prev
Next
|
|
|
Giant topological Hall effect of ferromagnetic kagome metal Fe3Sn2 |
Qi Wang(王琦), Qiangwei Yin(殷蔷薇), Hechang Lei(雷和畅) |
Department of Physics and Beijing Key Laboratory of Opto-electronic Functional Materials&Micro-nano Devices, Renmin University of China, Beijing 100872, China |
|
|
Abstract We present the experiment observation of a giant topological Hall effect (THE) in a frustrated kagome bilayer magnet Fe3Sn2. The negative topologically Hall resistivity appears when the field is below 1.3 T and it increases with increasing temperature up to 300 K. Its maximum absolute value reaches ~2.01 μΩ·cm at 300 K and 0.76 T. The origins of the observed giant THE can be attributed to the coexistence of the field-induced skyrmion state and the non-collinear spin configuration, possibly related to the magnetic frustration interaction in Fe3Sn2.
|
Received: 22 October 2019
Revised: 23 November 2019
Accepted manuscript online:
|
PACS:
|
71.27.+a
|
(Strongly correlated electron systems; heavy fermions)
|
|
71.55.Ak
|
(Metals, semimetals, and alloys)
|
|
75.50.-y
|
(Studies of specific magnetic materials)
|
|
Fund: Project supported by the National Key R&D Program of China (Grant No. 2016YFA0300504), the National Natural Science Foundation of China (Grant Nos. 11574394, 11774423, and 11822412), the Fundamental Research Funds for the Central Universities of China, and the Research Funds of Renmin University of China (RUC) (Grant Nos. 15XNLQ07, 18XNLG14, and 19XNLG17). |
Corresponding Authors:
Hechang Lei
E-mail: hlei@ruc.edu.cn
|
Cite this article:
Qi Wang(王琦), Qiangwei Yin(殷蔷薇), Hechang Lei(雷和畅) Giant topological Hall effect of ferromagnetic kagome metal Fe3Sn2 2020 Chin. Phys. B 29 017101
|
[1] |
Hall E H 1879 Am. J. Math. 2 287
|
[2] |
Hall E H 1880 Philos. Mag. 10 301
|
[3] |
Hall E H 1881 Philos. Mag. 12 157
|
[4] |
Karplus R and Luttinger J M 1954 Phys. Rev. 95 1154
|
[5] |
Smit J 1955 Physica 21 877
|
[6] |
Smit J 1958 Physica 24 39
|
[7] |
Berger L 1970 Phys. Rev. B 2 4559
|
[8] |
Jungwirth T, Niu Q and MacDonald A H 2002 Phys. Rev. Lett. 88 207208
|
[9] |
Onoda M and Nagaosa N 2003 Phys. Rev. Lett. 90 206601
|
[10] |
Haldane F D M 2004 Phys. Rev. Lett. 93 206602
|
[11] |
Yao Y G, Kleinman L, MacDonald A H, Sinova J, Jungwirth T, Wang D S, Wang E G and Niu Q 2004 Phys. Rev. Lett. 92 037204
|
[12] |
Ye J, Kim Y B, Millis A J, Shraiman B I, Majumdar P and Teśanović Z 1999 Phys. Rev. Lett. 83 3737
|
[13] |
Onoda M, Tatara G and Nagaosa N 2004 J. Phys. Soc. Jpn. 73 2624
|
[14] |
Nagaosa N and Tokura Y 2013 Nat. Nanotech. 8 899
|
[15] |
Neubauer A, Pfleiderer C, Binz B, Rosch A, Ritz R, Niklowitz P G and Böni P 2009 Phys. Rev. Lett. 102 186602
|
[16] |
Lee M, Kang W, Onose Y, Tokura Y and Ong N P 2009 Phys. Rev. Lett. 102 186601
|
[17] |
Li Y, Kanazawa N, Yu X Z, Tsukazaki A, Kawasaki M, Ichikawa M, Jin X F, Kagawa F and Tokura Y 2013 Phys. Rev. Lett. 110 117202
|
[18] |
Kanazawa N, Onose Y, Arima T, Okuyama D, Ohoyama K, Wakimoto S, Kakurai K, Ishiwata S and Tokura Y 2011 Phys. Rev. Lett. 106 156603
|
[19] |
Yu X Z, Kanazawa N, Onose Y, Kimoto K, Zhang W Z, Ishiwata S, Matsui Y and Tokura Y 2011 Nat. Mater. 10 106
|
[20] |
Huang S X and Chien C L 2012 Phys. Rev. Lett. 108 267201
|
[21] |
Yokouchi T, Kanazawa N, Tsukazaki A, Kozuka Y, Kawasaki M, Ichikawa M, Kagawa F and Tokura Y 2014 Phys. Rev. B 89 064416
|
[22] |
Wang W H, Zhang Y, Xu G Z, Peng L C, Ding B, Wang Y, Hou Z P, Zhang X M, Li X Y, Liu E K, Wang S G, Cai J W, Wang F W, Li J Q, Hu F X, Wu G H, Shen B G and Zhang X X 2016 Adv. Mater. 28 6887
|
[23] |
Xiao X F, Peng L C, Zhao X G, Zhang Y, Dai Y Y, Guo J, Tong M, Li J, Li B, Liu W, Cai J W, Shen B G and Zhang Z D 2019 Appl. Phys. Lett. 114 142404
|
[24] |
Machida Y, Nakatsuji S, Maeno Y, Tayama T, Sakakibara T and Onoda S 2007 Phys. Rev. Lett. 98 057203
|
[25] |
Taguchi Y, Oohara Y, Yoshizawa H, Nagaosa N and Tokura Y 2001 Science 291 2573
|
[26] |
Takatsu H, Yonezawa S, Fujimoto S and Maeno Y 2010 Phys. Rev. Lett. 105 137201
|
[27] |
Shiomi Y, Mochizuki M, Kaneko Y and Tokura Y 2012 Phys. Rev. Lett. 108 056601
|
[28] |
Wang Y H, Xian C, Wang J, Liu B J, Ling L S, Zhang L, Cao L, Qu Z and Xiong Y M 2017 Phys. Rev. B 96 134428
|
[29] |
Kurumaji T, Nakajima T, Hirschberger M, Kikkawa A, Yamasaki Y, Sagayama H, Nakao H, Taguchi Y, Arima T and Tokura Y 2019 Science 365 6456
|
[30] |
Rout P K, Madduri P V P, Manna S K and Nayak A K 2019 Phys. Rev. B 99 094430
|
[31] |
Liu Z H, Zhang Y J, Liu G D, Ding B, Liu E K, Jafri H M, Hou Z P, Wang W H, Ma X Q and Wu G H 2017 Sci. Rep. 7 515
|
[32] |
Sürgers C, Fischer G, Winkel P and Löhneysen H V 2014 Nat. Commun. 5 3400
|
[33] |
Okubo T, Chung S and Kawamura H 2012 Phys. Rev. Lett. 108 017206
|
[34] |
Leonov A O and Mostovoy M 2015 Nat. Commun. 6 8275
|
[35] |
Batista C D, Lin S Z, Hayami S and Kamiya Y 2016 Rep. Prog. Phys. 79 084504
|
[36] |
Hayami S, Ozawa R and Motome Y 2017 Phys. Rev. B 95 224424
|
[37] |
Wang Q, Sun S S, Zhang X, Pang F and Lei H C 2016 Phys. Rev. B 94 075135
|
[38] |
Ye L, Kang M, Liu J, Von Cube F, Wicker C R, Suzuki T, Jozwiak C, Bostwick A, Rotenberg E, Bell D C, Fu L, Comin R and Checkelsky J G 2018 Nature 555 638
|
[39] |
Lin Z Y, Choi J H, Zhang Q, Qin W, Yi S, Wang P D, Li L, Wang Y F, Zhang H, Sun Z, Wei L M, Zhang S B, Guo T F, Lu Q Y, Cho J H, Zeng C G and Zhang Z Y 2018 Phys. Rev. Lett. 121 096401
|
[40] |
Hou Z, Ren W, Ding B, Xu G, Wang Y, Yang B, Zhang Q, Zhang Y, Liu E, Xu F, Wang W, Wu G, Zhang X, Shen B and Zhang Z 2017 Adv. Mater. 29 1701144
|
[41] |
Hou Z, Zhang Q, Xu G, Gong C, Ding B, Wang Y, Li H, Liu E, Xu F, Zhang H, Yao Y, Wu G, Zhang X X and Wang W 2018 Nano Lett. 18 1274
|
[42] |
Fenner L A, Dee A A and Wills A S 2009 J. Phys.: Condens. Matter 21 452202
|
[43] |
Malaman B, Fruchart D and Caër G L 1978 J. Phys. F 8 2389
|
[44] |
Caër G L, Malaman B and Roques B 1978 J. Phys. F 8 323
|
[45] |
Kida T, Fenner L A, Dee A A, Terasaki I, Hagiwara M and Wills A S 2011 J. Phys.: Condens. Matter 23 112205
|
[46] |
Nagaosa N, Sinova J, Onoda S, MacDonald A H and Ong N P 2010 Rev. Mod. Phys. 82 1539
|
[47] |
Wang Q, Xu Y F, Lou R, Liu Z H, Li M, Huang Y B, Shen D W, Weng H M, Wang S C and Lei H C 2018 Nat. Commun. 9 3681
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|