Please wait a minute...
Chin. Phys. B, 2020, Vol. 29(1): 017101    DOI: 10.1088/1674-1056/ab5fbc
Special Issue: Virtual Special Topic — Magnetism and Magnetic Materials
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES Prev   Next  

Giant topological Hall effect of ferromagnetic kagome metal Fe3Sn2

Qi Wang(王琦), Qiangwei Yin(殷蔷薇), Hechang Lei(雷和畅)
Department of Physics and Beijing Key Laboratory of Opto-electronic Functional Materials&Micro-nano Devices, Renmin University of China, Beijing 100872, China
Abstract  We present the experiment observation of a giant topological Hall effect (THE) in a frustrated kagome bilayer magnet Fe3Sn2. The negative topologically Hall resistivity appears when the field is below 1.3 T and it increases with increasing temperature up to 300 K. Its maximum absolute value reaches ~2.01 μΩ·cm at 300 K and 0.76 T. The origins of the observed giant THE can be attributed to the coexistence of the field-induced skyrmion state and the non-collinear spin configuration, possibly related to the magnetic frustration interaction in Fe3Sn2.
Keywords:  topological Hall effect      skyrmion state      non-collinear spin configuration  
Received:  22 October 2019      Revised:  23 November 2019      Accepted manuscript online: 
PACS:  71.27.+a (Strongly correlated electron systems; heavy fermions)  
  71.55.Ak (Metals, semimetals, and alloys)  
  75.50.-y (Studies of specific magnetic materials)  
Fund: Project supported by the National Key R&D Program of China (Grant No. 2016YFA0300504), the National Natural Science Foundation of China (Grant Nos. 11574394, 11774423, and 11822412), the Fundamental Research Funds for the Central Universities of China, and the Research Funds of Renmin University of China (RUC) (Grant Nos. 15XNLQ07, 18XNLG14, and 19XNLG17).
Corresponding Authors:  Hechang Lei     E-mail:  hlei@ruc.edu.cn

Cite this article: 

Qi Wang(王琦), Qiangwei Yin(殷蔷薇), Hechang Lei(雷和畅) Giant topological Hall effect of ferromagnetic kagome metal Fe3Sn2 2020 Chin. Phys. B 29 017101

[1] Hall E H 1879 Am. J. Math. 2 287
[2] Hall E H 1880 Philos. Mag. 10 301
[3] Hall E H 1881 Philos. Mag. 12 157
[4] Karplus R and Luttinger J M 1954 Phys. Rev. 95 1154
[5] Smit J 1955 Physica 21 877
[6] Smit J 1958 Physica 24 39
[7] Berger L 1970 Phys. Rev. B 2 4559
[8] Jungwirth T, Niu Q and MacDonald A H 2002 Phys. Rev. Lett. 88 207208
[9] Onoda M and Nagaosa N 2003 Phys. Rev. Lett. 90 206601
[10] Haldane F D M 2004 Phys. Rev. Lett. 93 206602
[11] Yao Y G, Kleinman L, MacDonald A H, Sinova J, Jungwirth T, Wang D S, Wang E G and Niu Q 2004 Phys. Rev. Lett. 92 037204
[12] Ye J, Kim Y B, Millis A J, Shraiman B I, Majumdar P and Teśanović Z 1999 Phys. Rev. Lett. 83 3737
[13] Onoda M, Tatara G and Nagaosa N 2004 J. Phys. Soc. Jpn. 73 2624
[14] Nagaosa N and Tokura Y 2013 Nat. Nanotech. 8 899
[15] Neubauer A, Pfleiderer C, Binz B, Rosch A, Ritz R, Niklowitz P G and Böni P 2009 Phys. Rev. Lett. 102 186602
[16] Lee M, Kang W, Onose Y, Tokura Y and Ong N P 2009 Phys. Rev. Lett. 102 186601
[17] Li Y, Kanazawa N, Yu X Z, Tsukazaki A, Kawasaki M, Ichikawa M, Jin X F, Kagawa F and Tokura Y 2013 Phys. Rev. Lett. 110 117202
[18] Kanazawa N, Onose Y, Arima T, Okuyama D, Ohoyama K, Wakimoto S, Kakurai K, Ishiwata S and Tokura Y 2011 Phys. Rev. Lett. 106 156603
[19] Yu X Z, Kanazawa N, Onose Y, Kimoto K, Zhang W Z, Ishiwata S, Matsui Y and Tokura Y 2011 Nat. Mater. 10 106
[20] Huang S X and Chien C L 2012 Phys. Rev. Lett. 108 267201
[21] Yokouchi T, Kanazawa N, Tsukazaki A, Kozuka Y, Kawasaki M, Ichikawa M, Kagawa F and Tokura Y 2014 Phys. Rev. B 89 064416
[22] Wang W H, Zhang Y, Xu G Z, Peng L C, Ding B, Wang Y, Hou Z P, Zhang X M, Li X Y, Liu E K, Wang S G, Cai J W, Wang F W, Li J Q, Hu F X, Wu G H, Shen B G and Zhang X X 2016 Adv. Mater. 28 6887
[23] Xiao X F, Peng L C, Zhao X G, Zhang Y, Dai Y Y, Guo J, Tong M, Li J, Li B, Liu W, Cai J W, Shen B G and Zhang Z D 2019 Appl. Phys. Lett. 114 142404
[24] Machida Y, Nakatsuji S, Maeno Y, Tayama T, Sakakibara T and Onoda S 2007 Phys. Rev. Lett. 98 057203
[25] Taguchi Y, Oohara Y, Yoshizawa H, Nagaosa N and Tokura Y 2001 Science 291 2573
[26] Takatsu H, Yonezawa S, Fujimoto S and Maeno Y 2010 Phys. Rev. Lett. 105 137201
[27] Shiomi Y, Mochizuki M, Kaneko Y and Tokura Y 2012 Phys. Rev. Lett. 108 056601
[28] Wang Y H, Xian C, Wang J, Liu B J, Ling L S, Zhang L, Cao L, Qu Z and Xiong Y M 2017 Phys. Rev. B 96 134428
[29] Kurumaji T, Nakajima T, Hirschberger M, Kikkawa A, Yamasaki Y, Sagayama H, Nakao H, Taguchi Y, Arima T and Tokura Y 2019 Science 365 6456
[30] Rout P K, Madduri P V P, Manna S K and Nayak A K 2019 Phys. Rev. B 99 094430
[31] Liu Z H, Zhang Y J, Liu G D, Ding B, Liu E K, Jafri H M, Hou Z P, Wang W H, Ma X Q and Wu G H 2017 Sci. Rep. 7 515
[32] Sürgers C, Fischer G, Winkel P and Löhneysen H V 2014 Nat. Commun. 5 3400
[33] Okubo T, Chung S and Kawamura H 2012 Phys. Rev. Lett. 108 017206
[34] Leonov A O and Mostovoy M 2015 Nat. Commun. 6 8275
[35] Batista C D, Lin S Z, Hayami S and Kamiya Y 2016 Rep. Prog. Phys. 79 084504
[36] Hayami S, Ozawa R and Motome Y 2017 Phys. Rev. B 95 224424
[37] Wang Q, Sun S S, Zhang X, Pang F and Lei H C 2016 Phys. Rev. B 94 075135
[38] Ye L, Kang M, Liu J, Von Cube F, Wicker C R, Suzuki T, Jozwiak C, Bostwick A, Rotenberg E, Bell D C, Fu L, Comin R and Checkelsky J G 2018 Nature 555 638
[39] Lin Z Y, Choi J H, Zhang Q, Qin W, Yi S, Wang P D, Li L, Wang Y F, Zhang H, Sun Z, Wei L M, Zhang S B, Guo T F, Lu Q Y, Cho J H, Zeng C G and Zhang Z Y 2018 Phys. Rev. Lett. 121 096401
[40] Hou Z, Ren W, Ding B, Xu G, Wang Y, Yang B, Zhang Q, Zhang Y, Liu E, Xu F, Wang W, Wu G, Zhang X, Shen B and Zhang Z 2017 Adv. Mater. 29 1701144
[41] Hou Z, Zhang Q, Xu G, Gong C, Ding B, Wang Y, Li H, Liu E, Xu F, Zhang H, Yao Y, Wu G, Zhang X X and Wang W 2018 Nano Lett. 18 1274
[42] Fenner L A, Dee A A and Wills A S 2009 J. Phys.: Condens. Matter 21 452202
[43] Malaman B, Fruchart D and Caër G L 1978 J. Phys. F 8 2389
[44] Caër G L, Malaman B and Roques B 1978 J. Phys. F 8 323
[45] Kida T, Fenner L A, Dee A A, Terasaki I, Hagiwara M and Wills A S 2011 J. Phys.: Condens. Matter 23 112205
[46] Nagaosa N, Sinova J, Onoda S, MacDonald A H and Ong N P 2010 Rev. Mod. Phys. 82 1539
[47] Wang Q, Xu Y F, Lou R, Liu Z H, Li M, Huang Y B, Shen D W, Weng H M, Wang S C and Lei H C 2018 Nat. Commun. 9 3681
[1] Magnetic ground state of plutonium dioxide: DFT+U calculations
Yue-Fei Hou(侯跃飞), Wei Jiang(江伟), Shu-Jing Li(李淑静), Zhen-Guo Fu(付振国), and Ping Zhang(张平). Chin. Phys. B, 2023, 32(2): 027103.
[2] CrAlGe: An itinerant ferromagnet with strong tunability by heat treatment
Zhaokun Dong(董昭昆), Zhen Wang(王振), Te Zhang(张特), Junsen Xiang(项俊森), Shuai Zhang(张帅), Lihua Liu(刘丽华), and Peijie Sun(孙培杰). Chin. Phys. B, 2022, 31(11): 117502.
[3] Quantum phase transitions in CePdAl probed by ultrasonic and thermoelectric measurements
Hengcan Zhao(赵恒灿), Meng Lyu(吕孟), Jiahao Zhang(张佳浩), Shuai Zhang(张帅), and Peijie Sun(孙培杰). Chin. Phys. B, 2022, 31(11): 117103.
[4] Kondo screening cloud in a superconductor with mixed s-wave and p-wave pairing states
Zhen-Zhen Huang(黄真真), Xiong-Tao Peng(彭雄涛), Wan-Sheng Wang(王万胜), and Jin-Hua Sun(孙金华). Chin. Phys. B, 2022, 31(10): 107101.
[5] Mottness, phase string, and high-Tc superconductivity
Jing-Yu Zhao(赵靖宇) and Zheng-Yu Weng(翁征宇). Chin. Phys. B, 2022, 31(8): 087104.
[6] Effect of f-c hybridization on the $\gamma\to \alpha$ phase transition of cerium studied by lanthanum doping
Yong-Huan Wang(王永欢), Yun Zhang(张云), Yu Liu(刘瑜), Xiao Tan(谈笑), Ce Ma(马策), Yue-Chao Wang(王越超), Qiang Zhang(张强), Deng-Peng Yuan(袁登鹏), Dan Jian(简单), Jian Wu(吴健), Chao Lai(赖超), Xi-Yang Wang(王西洋), Xue-Bing Luo(罗学兵), Qiu-Yun Chen(陈秋云), Wei Feng(冯卫), Qin Liu(刘琴), Qun-Qing Hao(郝群庆), Yi Liu(刘毅), Shi-Yong Tan(谭世勇), Xie-Gang Zhu(朱燮刚), Hai-Feng Song(宋海峰), and Xin-Chun Lai(赖新春). Chin. Phys. B, 2022, 31(8): 087102.
[7] Uniaxial stress effect on quasi-one-dimensional Kondo lattice CeCo2Ga8
Kangqiao Cheng(程康桥), Binjie Zhou(周斌杰), Cuixiang Wang(王翠香), Shuo Zou(邹烁), Yupeng Pan(潘宇鹏), Xiaobo He(何晓波), Jian Zhang(张健), Fangjun Lu(卢方君), Le Wang(王乐), Youguo Shi(石友国), and Yongkang Luo(罗永康). Chin. Phys. B, 2022, 31(6): 067104.
[8] Real-space parallel density matrix renormalization group with adaptive boundaries
Fu-Zhou Chen(陈富州), Chen Cheng(程晨), and Hong-Gang Luo(罗洪刚). Chin. Phys. B, 2021, 30(8): 080202.
[9] CeAu2In4: A candidate of quasi-one-dimensional antiferromagnetic Kondo lattice
Meng Lyu(吕孟), Hengcan Zhao(赵恒灿), Jiahao Zhang(张佳浩), Zhen Wang(王振), Shuai Zhang(张帅), and Peijie Sun(孙培杰). Chin. Phys. B, 2021, 30(8): 087101.
[10] Magnetic impurity in hybrid and type-II nodal line semimetals
Xiao-Rong Yang(杨晓容), Zhen-Zhen Huang(黄真真), Wan-Sheng Wang(王万胜), and Jin-Hua Sun(孙金华). Chin. Phys. B, 2021, 30(6): 067103.
[11] Resistivity minimum emerges in Anderson impurity model modified with Sachdev-Ye-Kitaev interaction
Lan Zhang(张欄), Yin Zhong(钟寅), and Hong-Gang Luo(罗洪刚). Chin. Phys. B, 2021, 30(4): 047106.
[12] Intercalation of van der Waals layered materials: A route towards engineering of electron correlation
Jingjing Niu(牛晶晶), Wenjie Zhang(章文杰), Zhilin Li(李治林), Sixian Yang(杨嗣贤), Dayu Yan(闫大禹), Shulin Chen(陈树林), Zhepeng Zhang(张哲朋), Yanfeng Zhang(张艳锋), Xinguo Ren(任新国), Peng Gao(高鹏), Youguo Shi(石友国), Dapeng Yu(俞大鹏), Xiaosong Wu(吴孝松). Chin. Phys. B, 2020, 29(9): 097104.
[13] Improved hybrid parallel strategy for density matrix renormalization group method
Fu-Zhou Chen(陈富州), Chen Cheng(程晨), Hong-Gang Luo(罗洪刚). Chin. Phys. B, 2020, 29(7): 070202.
[14] Lifshitz transition in triangular lattice Kondo-Heisenberg model
Lan Zhang(张欄), Yin Zhong(钟寅), Hong-Gang Luo(罗洪刚). Chin. Phys. B, 2020, 29(7): 077102.
[15] Point-contact spectroscopy on antiferromagnetic Kondo semiconductors CeT2Al10 (T=Ru and Os)
Jie Li(李洁), Li-Qiang Che(车利强), Tian Le(乐天), Jia-Hao Zhang(张佳浩), Pei-Jie Sun(孙培杰), Toshiro Takabatake, Xin Lu(路欣). Chin. Phys. B, 2020, 29(7): 077103.
No Suggested Reading articles found!