CONDENSED MATTER: STRUCTURAL, MECHANICAL, AND THERMAL PROPERTIES |
Prev
Next
|
|
|
First-principles study of high performance lithium/sodium storage of Ti3C2T2 nanosheets as electrode materials |
Li-Na Bai(白丽娜)1, Ling-Ying Kong(孔令莹)1, Jing Wen(温静)1, Ning Ma(马宁)2, Hong Gao(高红)1, Xi-Tian Zhang(张喜田)1,3 |
1 Key Laboratory for Photonic and Electronic Bandgap Materials, Ministry of Education, School of Physics and Electronic Engineering, Harbin Normal University, Harbin 150025, China; 2 School of Computer Science and Information Engineering, Harbin Normal University, Harbin 150025, China; 3 Department of Physics, Harbin Institute of Technology, Harbin 150001, China |
|
|
Abstract Ti3C2Tx nanosheet, the first synthesized MXene with high capacity performance and charge/discharge rate, has attracted increasingly attention in renewable energy storage applications. By performing systematic density functional theory calculations, the theoretical capacity of the intrinsic structure of single- and multi-layered Ti3C2T2 (T=F or O) corresponding to M (M=Li and Na) atoms are investigated. Theoretical volumetric capacity and gravimetric capacity are obtained, which are related to the stacking degree. The optimal ratios of capacity to structure are determined under different stacking degrees for understanding the influence of surface functional groups on energy storage performance. Its performance can be tuned by performing surface modification and increasing the interlayer distance. In addition, the reason for theoretical capacity differences of M atoms is analyzed, which is attributed to difference in interaction between the M-ions and substrate and the difference in electrostatic exclusion between adsorbed M-ions. These results provide an insight into the understanding of the method of efficiently increasing the energy storage performance, which will be useful for designing and using high performance electrode materials.
|
Received: 02 September 2019
Revised: 14 November 2019
Accepted manuscript online:
|
PACS:
|
68.35.Md
|
(Surface thermodynamics, surface energies)
|
|
68.43.-h
|
(Chemisorption/physisorption: adsorbates on surfaces)
|
|
68.43.Fg
|
(Adsorbate structure (binding sites, geometry))
|
|
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 51772069 and 51772070). |
Corresponding Authors:
Xi-Tian Zhang
E-mail: xtzhangzhang@hotmail.com
|
Cite this article:
Li-Na Bai(白丽娜), Ling-Ying Kong(孔令莹), Jing Wen(温静), Ning Ma(马宁), Hong Gao(高红), Xi-Tian Zhang(张喜田) First-principles study of high performance lithium/sodium storage of Ti3C2T2 nanosheets as electrode materials 2020 Chin. Phys. B 29 016802
|
[1] |
El-Kady M F, Ihns M, Li M P, Hwang J Y, Mousavi M F, Chaney L, Lech A T and Kaner R B 2015 Proc. Natl. Acad. Sci. USA 112 4233
|
[2] |
Bhimanapati G R, Lin Z and Robinson J A 2015 ACS Nano 9 11509
|
[3] |
Wang G, Yang J, Park J, Gou X, Wang B, Liu H and Yao J 2008 J. Phys. Chem. C 112 8192
|
[4] |
Dikin D A, Stankovich S, Zimney E J, Piner R D, Dommett G H, Evmenenko G, Nguyen S T and Ruoff R S 2007 Nature 448 457
|
[5] |
Zhou X F, Fang H Y and Tang C M 2014 Adv. Mater. 26 6622
|
[6] |
Luan X W, Sun J P, Wang F G, Wei H L and Hu Y F 2019 Chin. Phys. B 28 026802
|
[7] |
Zou F, Hu X, Li Z, Qie L, Hu C, Zeng R, Jiang Y and Huang Y 2014 Adv. Mater. 26 6622
|
[8] |
Liu H, Neal A T, Zhu Z, Luo Z, Xu X, Tománek D and Ye P D 2014 ACS Nano 8 4033
|
[9] |
Mortazavi M J, Wang C, Deng J K, Shenoy V B and Medhekar N V 2014 J. Power Sources 268 279
|
[10] |
Naguib M, Mashtalir O, Carle J, Presser V, Lu J, Hultman L, Gogotsi Y and Barsoum M W 2012 ACS Nano 6 1322
|
[11] |
Naguib M, Mochalin V N, Barsoum M W and Gogotsi Y 2014 Adv. Mater. 26 992
|
[12] |
Khazaei M, Ranjbar A, Arai M, Sasaki T and Yunoki S 2017 J. Mater. Chem. C 5 2488
|
[13] |
Khazaei M, Ranjbar A, Arai M, Sasaki T and Yunoki S 2017 J. Mater. Chem. C 5 2488
|
[14] |
Zhang S J, Ji W X, Zhang C W, Zhang S F, Li P, Li S S and Yan S S 2018 Chin. Phys. Lett. 35 087303
|
[15] |
Wang C, Peng Q Q, Fan X W, Liang W Y, Zhang F, Liu J and Zhang H 2018 Chin. Phys. B 27 094214
|
[16] |
Barsoum M W 2000 Prog. Solid St. Chem. 28 201
|
[17] |
Xie Y, Naguib M, Mochalin V N, Barsoum M W, Gogotsi Y, Yu X Q, Nam K W, Yang X Q, Kolesnikov A I and Kent P R C 2014 J. Am. Chem. Soc. 136 6385
|
[18] |
Hope M A, Forse A C, Griffith K J, Lukatskaya M R, Ghidiu M, Gogotsi Y and Grey C P 2016 Phys. Chem. Chem. Phys. 18 5509
|
[19] |
Hong Ng V M, Huang, Zhou K, Lee P S, Que W X, Xu Z C and Kong L B 2017 J. Mater. Chem. A 5 3039
|
[20] |
Naguib M, Kurtoglu M, Presser V, Lu J, Niu J J, Heon M, Hultman L, Gogotsi Y and Barsoum M W 2011 Adv. Mater. 23 4248
|
[21] |
Ren C E, Hatzell K B, Alhabeb M, Ling Z, Mahmoud K A and Gogotsi Y 2015 J. Phys. Chem. Lett. 6 4026
|
[22] |
Ghidiu M, Lukatskaya M R, Zhao M Q, Gogotsi Y and Barsoum M W 2014 Nature 516 78
|
[23] |
Hu T, Wang J M, Zhang H, Li Z J, Hu M M and Wang X H 2015 Phys. Chem. Chem. Phys. 17 9997
|
[24] |
Xie Y, Dall'Agnese Y, Naguib M, Gogotsi Y, Barsoum M W, Zhuang H L and Kent P R C 2014 ACS Nano 8 9606
|
[25] |
Tang Q, Zhou Z and Shen P W 2012 J. Am. Chem. Soc. 134 16909
|
[26] |
Yu Y X 2016 J. Phys. Chem. C 120 5288
|
[27] |
Er D, Li J W, Naguib M, Gogotsi Y and Shenoy V B 2014 ACS Appl. Mater. Interfaces 6 11173
|
[28] |
Xie Y and Kent P R C 2013 Phys. Rev. B 87 235441
|
[29] |
Zhan C, Sun W W, Xie Y, Jiang D and Kent P R C 2019 ACS Appl. Mater. Interfaces 11 24885
|
[30] |
Lukatskaya M R, Mashtalir O, Ren C E, Dall'Agnese Y, Rozier P, Taberna P L, Naguib M, Simon P, Barsoum M W and Gogotsi Y 2013 Science 34 1502
|
[31] |
Xiong D B, Li X F, Bai Z M and Lu S G 2018 Small 14 1703419
|
[32] |
Kajiyama S, Szabova L, Sodeyama K, Iinuma H, Morita R, Gotoh K, Tateyama Y, Okubo M and Yamada A 2016 ACS Nano 10 3334
|
[33] |
Xie X Q, Kretschmer K, Anasori B, Sun B and Wang G X 2018 ACS Appl. Nano Mater. 1 505
|
[34] |
Segall M D, Lindan P J D, Probert M J, Pickard C J, Hasnip P J, Clark S J and Payne M C 2002 J. Phys.: Condens. Matter 14 2717
|
[35] |
Perdew J P, Chevary J A, Vosko S H, Jackson K A, Pederson M R, Singh D J and Fiolhais C 1992 Phys. Rev. B 46 6671
|
[36] |
Grimme S J 2004 Comput. Chem. 25 1463
|
[37] |
Wen J, Zhang X T and Gao H 2017 Phys. Chem. Chem. Phys. 19 9509
|
[38] |
Wen J, Zhang X T and Gao H 2018 Physica B: Condens. Matter 537 155
|
[39] |
Rao D W, Zhang L Y, Wang Y H, Meng Z S, Qian X Y, Liu J H, Shen X Q, Qiao G J and Lu R F 2017 J. Phys. Chem. C 121 11047
|
[40] |
Weng H M, Ranjbar A, Liang Y, Song Z D, Khazaei M, Yunoki S, Arai M, Kawazoe Y, Fang Z and Dai X 2015 Phys. Rev. B 92 075436
|
[41] |
Hu T, Li Z J, Hu M M, Wang J M, Hu Q M, Li Q Z, Wang X H 2017 J. Phys. Chem. C 121 19254
|
[42] |
Fu Q S, Wen J, Zhang N, Wu L L, Zhang M Y, Lin S Y, Gao H and Zhang X T 2017 RSC Adv. 7 11998
|
[43] |
Jin Q, Zhang N, Zhu C C, Gao H and Zhang X T 2018 Nanoscale 10 16935
|
[44] |
Mashtalir O, Naguib M, Mochalin V N, DallAgnese Y, Heon M, Barsoum M W and Gogotsi Y 2013 Nat. Commun. 4 1716
|
[45] |
Guo X, Xie X, Choi S, Zhao Y, Liu H, Wang C, Chang S and Wang G 2017 J. Mater. Chem. A 5 12445
|
[46] |
Xie X, Zhao M Q, Anasori B, Maleski K, Ren C E, Li J, Byles B W, Pomerantseva E, Wang G and Gogotsi Y 2016 Nano Energy 26 513
|
[47] |
Zhang X, Zhang Z H and Zhou Z 2018 J. Energy Chem. 27 73
|
[48] |
Liu F F, Liu Y C, Zhao X D, Liu X B and Fan L Z 2019 J. Mater. Chem. A 7 16712
|
[49] |
Liu Y Y, Merinov B V and Goddard A 2016 Proc. Natl. Acad. Sci. USA 13 3735
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|