Please wait a minute...
Chin. Phys. B, 2020, Vol. 29(1): 016802    DOI: 10.1088/1674-1056/ab592e
CONDENSED MATTER: STRUCTURAL, MECHANICAL, AND THERMAL PROPERTIES Prev   Next  

First-principles study of high performance lithium/sodium storage of Ti3C2T2 nanosheets as electrode materials

Li-Na Bai(白丽娜)1, Ling-Ying Kong(孔令莹)1, Jing Wen(温静)1, Ning Ma(马宁)2, Hong Gao(高红)1, Xi-Tian Zhang(张喜田)1,3
1 Key Laboratory for Photonic and Electronic Bandgap Materials, Ministry of Education, School of Physics and Electronic Engineering, Harbin Normal University, Harbin 150025, China;
2 School of Computer Science and Information Engineering, Harbin Normal University, Harbin 150025, China;
3 Department of Physics, Harbin Institute of Technology, Harbin 150001, China
Abstract  Ti3C2Tx nanosheet, the first synthesized MXene with high capacity performance and charge/discharge rate, has attracted increasingly attention in renewable energy storage applications. By performing systematic density functional theory calculations, the theoretical capacity of the intrinsic structure of single- and multi-layered Ti3C2T2 (T=F or O) corresponding to M (M=Li and Na) atoms are investigated. Theoretical volumetric capacity and gravimetric capacity are obtained, which are related to the stacking degree. The optimal ratios of capacity to structure are determined under different stacking degrees for understanding the influence of surface functional groups on energy storage performance. Its performance can be tuned by performing surface modification and increasing the interlayer distance. In addition, the reason for theoretical capacity differences of M atoms is analyzed, which is attributed to difference in interaction between the M-ions and substrate and the difference in electrostatic exclusion between adsorbed M-ions. These results provide an insight into the understanding of the method of efficiently increasing the energy storage performance, which will be useful for designing and using high performance electrode materials.
Keywords:  density functional theory      MXene      electrode materials  
Received:  02 September 2019      Revised:  14 November 2019      Accepted manuscript online: 
PACS:  68.35.Md (Surface thermodynamics, surface energies)  
  68.43.-h (Chemisorption/physisorption: adsorbates on surfaces)  
  68.43.Fg (Adsorbate structure (binding sites, geometry))  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 51772069 and 51772070).
Corresponding Authors:  Xi-Tian Zhang     E-mail:  xtzhangzhang@hotmail.com

Cite this article: 

Li-Na Bai(白丽娜), Ling-Ying Kong(孔令莹), Jing Wen(温静), Ning Ma(马宁), Hong Gao(高红), Xi-Tian Zhang(张喜田) First-principles study of high performance lithium/sodium storage of Ti3C2T2 nanosheets as electrode materials 2020 Chin. Phys. B 29 016802

[1] El-Kady M F, Ihns M, Li M P, Hwang J Y, Mousavi M F, Chaney L, Lech A T and Kaner R B 2015 Proc. Natl. Acad. Sci. USA 112 4233
[2] Bhimanapati G R, Lin Z and Robinson J A 2015 ACS Nano 9 11509
[3] Wang G, Yang J, Park J, Gou X, Wang B, Liu H and Yao J 2008 J. Phys. Chem. C 112 8192
[4] Dikin D A, Stankovich S, Zimney E J, Piner R D, Dommett G H, Evmenenko G, Nguyen S T and Ruoff R S 2007 Nature 448 457
[5] Zhou X F, Fang H Y and Tang C M 2014 Adv. Mater. 26 6622
[6] Luan X W, Sun J P, Wang F G, Wei H L and Hu Y F 2019 Chin. Phys. B 28 026802
[7] Zou F, Hu X, Li Z, Qie L, Hu C, Zeng R, Jiang Y and Huang Y 2014 Adv. Mater. 26 6622
[8] Liu H, Neal A T, Zhu Z, Luo Z, Xu X, Tománek D and Ye P D 2014 ACS Nano 8 4033
[9] Mortazavi M J, Wang C, Deng J K, Shenoy V B and Medhekar N V 2014 J. Power Sources 268 279
[10] Naguib M, Mashtalir O, Carle J, Presser V, Lu J, Hultman L, Gogotsi Y and Barsoum M W 2012 ACS Nano 6 1322
[11] Naguib M, Mochalin V N, Barsoum M W and Gogotsi Y 2014 Adv. Mater. 26 992
[12] Khazaei M, Ranjbar A, Arai M, Sasaki T and Yunoki S 2017 J. Mater. Chem. C 5 2488
[13] Khazaei M, Ranjbar A, Arai M, Sasaki T and Yunoki S 2017 J. Mater. Chem. C 5 2488
[14] Zhang S J, Ji W X, Zhang C W, Zhang S F, Li P, Li S S and Yan S S 2018 Chin. Phys. Lett. 35 087303
[15] Wang C, Peng Q Q, Fan X W, Liang W Y, Zhang F, Liu J and Zhang H 2018 Chin. Phys. B 27 094214
[16] Barsoum M W 2000 Prog. Solid St. Chem. 28 201
[17] Xie Y, Naguib M, Mochalin V N, Barsoum M W, Gogotsi Y, Yu X Q, Nam K W, Yang X Q, Kolesnikov A I and Kent P R C 2014 J. Am. Chem. Soc. 136 6385
[18] Hope M A, Forse A C, Griffith K J, Lukatskaya M R, Ghidiu M, Gogotsi Y and Grey C P 2016 Phys. Chem. Chem. Phys. 18 5509
[19] Hong Ng V M, Huang, Zhou K, Lee P S, Que W X, Xu Z C and Kong L B 2017 J. Mater. Chem. A 5 3039
[20] Naguib M, Kurtoglu M, Presser V, Lu J, Niu J J, Heon M, Hultman L, Gogotsi Y and Barsoum M W 2011 Adv. Mater. 23 4248
[21] Ren C E, Hatzell K B, Alhabeb M, Ling Z, Mahmoud K A and Gogotsi Y 2015 J. Phys. Chem. Lett. 6 4026
[22] Ghidiu M, Lukatskaya M R, Zhao M Q, Gogotsi Y and Barsoum M W 2014 Nature 516 78
[23] Hu T, Wang J M, Zhang H, Li Z J, Hu M M and Wang X H 2015 Phys. Chem. Chem. Phys. 17 9997
[24] Xie Y, Dall'Agnese Y, Naguib M, Gogotsi Y, Barsoum M W, Zhuang H L and Kent P R C 2014 ACS Nano 8 9606
[25] Tang Q, Zhou Z and Shen P W 2012 J. Am. Chem. Soc. 134 16909
[26] Yu Y X 2016 J. Phys. Chem. C 120 5288
[27] Er D, Li J W, Naguib M, Gogotsi Y and Shenoy V B 2014 ACS Appl. Mater. Interfaces 6 11173
[28] Xie Y and Kent P R C 2013 Phys. Rev. B 87 235441
[29] Zhan C, Sun W W, Xie Y, Jiang D and Kent P R C 2019 ACS Appl. Mater. Interfaces 11 24885
[30] Lukatskaya M R, Mashtalir O, Ren C E, Dall'Agnese Y, Rozier P, Taberna P L, Naguib M, Simon P, Barsoum M W and Gogotsi Y 2013 Science 34 1502
[31] Xiong D B, Li X F, Bai Z M and Lu S G 2018 Small 14 1703419
[32] Kajiyama S, Szabova L, Sodeyama K, Iinuma H, Morita R, Gotoh K, Tateyama Y, Okubo M and Yamada A 2016 ACS Nano 10 3334
[33] Xie X Q, Kretschmer K, Anasori B, Sun B and Wang G X 2018 ACS Appl. Nano Mater. 1 505
[34] Segall M D, Lindan P J D, Probert M J, Pickard C J, Hasnip P J, Clark S J and Payne M C 2002 J. Phys.: Condens. Matter 14 2717
[35] Perdew J P, Chevary J A, Vosko S H, Jackson K A, Pederson M R, Singh D J and Fiolhais C 1992 Phys. Rev. B 46 6671
[36] Grimme S J 2004 Comput. Chem. 25 1463
[37] Wen J, Zhang X T and Gao H 2017 Phys. Chem. Chem. Phys. 19 9509
[38] Wen J, Zhang X T and Gao H 2018 Physica B: Condens. Matter 537 155
[39] Rao D W, Zhang L Y, Wang Y H, Meng Z S, Qian X Y, Liu J H, Shen X Q, Qiao G J and Lu R F 2017 J. Phys. Chem. C 121 11047
[40] Weng H M, Ranjbar A, Liang Y, Song Z D, Khazaei M, Yunoki S, Arai M, Kawazoe Y, Fang Z and Dai X 2015 Phys. Rev. B 92 075436
[41] Hu T, Li Z J, Hu M M, Wang J M, Hu Q M, Li Q Z, Wang X H 2017 J. Phys. Chem. C 121 19254
[42] Fu Q S, Wen J, Zhang N, Wu L L, Zhang M Y, Lin S Y, Gao H and Zhang X T 2017 RSC Adv. 7 11998
[43] Jin Q, Zhang N, Zhu C C, Gao H and Zhang X T 2018 Nanoscale 10 16935
[44] Mashtalir O, Naguib M, Mochalin V N, DallAgnese Y, Heon M, Barsoum M W and Gogotsi Y 2013 Nat. Commun. 4 1716
[45] Guo X, Xie X, Choi S, Zhao Y, Liu H, Wang C, Chang S and Wang G 2017 J. Mater. Chem. A 5 12445
[46] Xie X, Zhao M Q, Anasori B, Maleski K, Ren C E, Li J, Byles B W, Pomerantseva E, Wang G and Gogotsi Y 2016 Nano Energy 26 513
[47] Zhang X, Zhang Z H and Zhou Z 2018 J. Energy Chem. 27 73
[48] Liu F F, Liu Y C, Zhao X D, Liu X B and Fan L Z 2019 J. Mater. Chem. A 7 16712
[49] Liu Y Y, Merinov B V and Goddard A 2016 Proc. Natl. Acad. Sci. USA 13 3735
[1] Predicting novel atomic structure of the lowest-energy FenP13-n(n=0-13) clusters: A new parameter for characterizing chemical stability
Yuanqi Jiang(蒋元祺), Ping Peng(彭平). Chin. Phys. B, 2023, 32(4): 047102.
[2] Ferroelectricity induced by the absorption of water molecules on double helix SnIP
Dan Liu(刘聃), Ran Wei(魏冉), Lin Han(韩琳), Chen Zhu(朱琛), and Shuai Dong(董帅). Chin. Phys. B, 2023, 32(3): 037701.
[3] A theoretical study of fragmentation dynamics of water dimer by proton impact
Zhi-Ping Wang(王志萍), Xue-Fen Xu(许雪芬), Feng-Shou Zhang(张丰收), and Xu Wang(王旭). Chin. Phys. B, 2023, 32(3): 033401.
[4] Plasmonic hybridization properties in polyenes octatetraene molecules based on theoretical computation
Nan Gao(高楠), Guodong Zhu(朱国栋), Yingzhou Huang(黄映洲), and Yurui Fang(方蔚瑞). Chin. Phys. B, 2023, 32(3): 037102.
[5] Effects of π-conjugation-substitution on ESIPT process for oxazoline-substituted hydroxyfluorenes
Di Wang(汪迪), Qiao Zhou(周悄), Qiang Wei(魏强), and Peng Song(宋朋). Chin. Phys. B, 2023, 32(2): 028201.
[6] High-performance artificial neurons based on Ag/MXene/GST/Pt threshold switching memristors
Xiao-Juan Lian(连晓娟), Jin-Ke Fu(付金科), Zhi-Xuan Gao(高志瑄),Shi-Pu Gu(顾世浦), and Lei Wang(王磊). Chin. Phys. B, 2023, 32(1): 017304.
[7] High-order harmonic generation of the cyclo[18]carbon molecule irradiated by circularly polarized laser pulse
Shu-Shan Zhou(周书山), Yu-Jun Yang(杨玉军), Yang Yang(杨扬), Ming-Yue Suo(索明月), Dong-Yuan Li(李东垣), Yue Qiao(乔月), Hai-Ying Yuan(袁海颖), Wen-Di Lan(蓝文迪), and Mu-Hong Hu(胡木宏). Chin. Phys. B, 2023, 32(1): 013201.
[8] First-principles study of a new BP2 two-dimensional material
Zhizheng Gu(顾志政), Shuang Yu(于爽), Zhirong Xu(徐知荣), Qi Wang(王琪), Tianxiang Duan(段天祥), Xinxin Wang(王鑫鑫), Shijie Liu(刘世杰), Hui Wang(王辉), and Hui Du(杜慧). Chin. Phys. B, 2022, 31(8): 086107.
[9] Adaptive semi-empirical model for non-contact atomic force microscopy
Xi Chen(陈曦), Jun-Kai Tong(童君开), and Zhi-Xin Hu(胡智鑫). Chin. Phys. B, 2022, 31(8): 088202.
[10] Collision site effect on the radiation dynamics of cytosine induced by proton
Xu Wang(王旭), Zhi-Ping Wang(王志萍), Feng-Shou Zhang(张丰收), and Chao-Yi Qian (钱超义). Chin. Phys. B, 2022, 31(6): 063401.
[11] First principles investigation on Li or Sn codoped hexagonal tungsten bronzes as the near-infrared shielding material
Bo-Shen Zhou(周博深), Hao-Ran Gao(高浩然), Yu-Chen Liu(刘雨辰), Zi-Mu Li(李子木),Yang-Yang Huang(黄阳阳), Fu-Chun Liu(刘福春), and Xiao-Chun Wang(王晓春). Chin. Phys. B, 2022, 31(5): 057804.
[12] Laser-induced fluorescence experimental spectroscopy and theoretical calculations of uranium monoxide
Xi-Lin Bai(白西林), Xue-Dong Zhang(张雪东), Fu-Qiang Zhang(张富强), and Timothy C Steimle. Chin. Phys. B, 2022, 31(5): 053301.
[13] Tunable electronic properties of GaS-SnS2 heterostructure by strain and electric field
Da-Hua Ren(任达华), Qiang Li(李强), Kai Qian(钱楷), and Xing-Yi Tan(谭兴毅). Chin. Phys. B, 2022, 31(4): 047102.
[14] Insights into the adsorption of water and oxygen on the cubic CsPbBr3 surfaces: A first-principles study
Xin Zhang(张鑫), Ruge Quhe(屈贺如歌), and Ming Lei(雷鸣). Chin. Phys. B, 2022, 31(4): 046401.
[15] First principles study on geometric and electronic properties of two-dimensional Nb2CTx MXenes
Guoliang Xu(徐国亮), Jing Wang(王晶), Xilin Zhang(张喜林), and Zongxian Yang(杨宗献). Chin. Phys. B, 2022, 31(3): 037304.
No Suggested Reading articles found!