INTERDISCIPLINARY PHYSICS AND RELATED AREAS OF SCIENCE AND TECHNOLOGY |
Prev
Next
|
|
|
Improved performance of back-gate MoS2 transistors by NH3-plasma treating high-k gate dielectrics |
Jian-Ying Chen(陈建颖)1, Xin-Yuan Zhao(赵心愿)2, Lu Liu(刘璐)2, Jing-Ping Xu(徐静平)2 |
1 Ningbo Information Technology Service Center, Ningbo 315400, China; 2 School of Optical and Electronic Information, Huazhong University of Science and Technology, Wuhan 430074, China |
|
|
Abstract NH3-plasma treatment is used to improve the quality of the gate dielectric and interface. Al2O3 is adopted as a buffer layer between HfO2 and MoS2 to decrease the interface-state density. Four groups of MOS capacitors and back-gate transistors with different gate dielectrics are fabricated and their C-V and I-V characteristics are compared. It is found that the Al2O3/HfO2 back-gate transistor with NH3-plasma treatment shows the best electrical performance:high on-off current ratio of 1.53×107, higher field-effect mobility of 26.51 cm2/V…, and lower subthreshold swing of 145 mV/dec. These are attributed to the improvements of the gate dielectric and interface qualities by the NH3-plasma treatment and the addition of Al2O3 as a buffer layer.
|
Received: 24 June 2019
Revised: 27 September 2019
Accepted manuscript online:
|
PACS:
|
81.07.-b
|
(Nanoscale materials and structures: fabrication and characterization)
|
|
73.40.Qv
|
(Metal-insulator-semiconductor structures (including semiconductor-to-insulator))
|
|
85.40.-e
|
(Microelectronics: LSI, VLSI, ULSI; integrated circuit fabrication technology)
|
|
81.65.-b
|
(Surface treatments)
|
|
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 61774064). |
Corresponding Authors:
Jing-Ping Xu
E-mail: jpxu@hust.edu.cn
|
Cite this article:
Jian-Ying Chen(陈建颖), Xin-Yuan Zhao(赵心愿), Lu Liu(刘璐), Jing-Ping Xu(徐静平) Improved performance of back-gate MoS2 transistors by NH3-plasma treating high-k gate dielectrics 2019 Chin. Phys. B 28 128101
|
[34] |
Yang Z Y, Liu X Q, Zou X M, Wang J L, Ma C, Jiang C Z, C Ho J, Pan C F, Xia X H, Xiong J and Liao L 2017 Adv. Funct. Mater. 27 1
|
[1] |
Radisavljevic B, Radenovic A, Brivio J, Giacometti V and Kis A 2011 Nat. Nanotechnol. 6 147
|
[35] |
Song X J, Xu J P, Liu L, Lai P T and Tang W M 2019 Appl. Surf. Sci. 481 1
|
[2] |
Wang X D, Wang P, Wang J L, Hu W D, Zhou X H, Guo N, Huang H, Sun S, Shen H, Lin T, Tang M H, Liao L, Jiang A Q, Sun J L, Meng X J, Chen X S, Lu W and Chu J H 2015 Adv. Mater. 27 6575
|
[36] |
Xu J P, Wen W, Zhao X Y, Liu L, Song X J, Lai P T and Tang W M 2018 Nanotechnolgy 29 345201
|
[3] |
Mark K F, Lee C G, Hone J, Shan J and Heinz T F 2010 Phys. Rev. Lett. 105 1
|
[37] |
Bhattacharjee S, Ganapathi K L, Nath D N and Navakanta B 2015 IEEE Trans. Electron. Devices 63 2556
|
[4] |
Radisavljevic B, Whitwick M B and Kis A 2011 ACS Nano 5 9934
|
[5] |
Wang H, Yu L L, Lee Y H, Shi Y M, Hsu A, L Chin M, Li L J, Dubey M, Kong J and Palacios T 2012 Nano Lett. 12 4674
|
[6] |
Lee H S, Min S W, Chang Y G, Park M K, Nam T, Kim H J, Kim J H, Ryu S M and Im S 2012 Nano Lett. 12 3695
|
[7] |
Yonn Y, Ganapathi K and Salahuddin S 2011 Nano Lett. 11 3768
|
[8] |
Das S, Chen H Y, Penumatcha A V and Appenzeller J 2013 Nano Lett. 13 100
|
[9] |
Liu H, T Neal A and Ye P D 2012 ACS Nano 6 8563
|
[10] |
Chang H Y, Yang S X, Lee J H, Tao L, Hwang W S, Jena D D, Lu N S and Akinwande D J 2013 ACS Nano 7 5446
|
[11] |
Bertolazzi S, Kransnozhon D and Kis A 2013 ACS Nano 7 3246
|
[12] |
Lee H S, Min S W, Park M K, Lee Y T, Jeon P J, Kim J H, Ryu S M and Im S 2012 Small 8 3111
|
[13] |
Sanchez O L, Lembke D, Kayci M, Radenovic A and Kis A 2013 Nat. Nanotechnol. 8 497
|
[14] |
Choi W, Cho M Y, Konar A, Lee J H, Cha G B, Hong S C, Kim S S, Kim J Y, Jena D D, Joo J S and Kim S K 2012 Adv. Mater. 24 5832
|
[15] |
Liu L T, Kumar S B, Ouyang Y J and Guo J 2011 IEEE Trans. Electron. Devices 58 3042
|
[16] |
Liu H and Ye P D 2012 IEEE Electron. Devices Lett. 33 546
|
[17] |
Illarionov Y Y, Smithe K K H, Waltl M, Knobloch T, Pop E and Grasser T 2017 IEEE Electron. Devices Lett. 38 1763
|
[18] |
Bolshakov P, Zhao P, Azcatl A, K Hurley P, M Wallace R and D Young C 2017 Appl. Phys. Lett. 111 032110
|
[19] |
Zou X, Xu J P, Huang H, Zhu Z Q, Wang H J, Li B R, Liao L and Fang G J 2018 Nanotechnology 29 245201
|
[20] |
Li X F, Xiong X, Li T Y, Li S C, Zhang Z F and Wu Y Q 2017 ACS Appl. Mater. Interfaces 9 44602
|
[21] |
Carrasco J, Lopez N and Illas F 2004 Phys. Rev. Lett. 93 225502
|
[22] |
Guha S and Narayanan V 2007 Phys. Rev. Lett. 98 196101
|
[23] |
Tse K, Liu D, Xiong K and Robertson J 2007 Microelectron Eng. 84 2028
|
[24] |
Park H B, Cho M, Park J, Hwang C S, Lee J C and Oh S J 2003 J. Appl. Phys. 94 1898
|
[25] |
Wen M, Xu J P, Liu L, Lai P T and Tang W M 2016 Appl. Phys. Express 9 095202
|
[26] |
Wen M, Xu J P, Lai P T and Tang W M 2017 IEEE Trans. Electron. Devices 64 1020
|
[27] |
Xu B, Xu J P, Liu L and Su Y 1975 Chin. Phys. Lett. 35 1
|
[28] |
Li C C, Shu K, Liao C, Fu C H, Hsieh T L, Chen L T, Liao Y L, Lu C C and Wang T K 2013 Microelectron Eng. 109 64
|
[29] |
Soares G V, Bastos K P, Pezzi R P, Miotti L, Driemeier C, Baumvol I J R, Hinkle C and Lucovsky G 2004 Appl. Phys. Lett. 84 4992
|
[30] |
Gavartin J L and Shluger A L 2005 J. Appl. Phys. 97 1
|
[31] |
Cho M H, Chung K B and Moon D W 2006 Appl. Phys. Lett. 89 182908
|
[32] |
Kazushi A and Makoto H 1990 Appl. Catal. 59 197
|
[33] |
Hagio T, Takase A and Umebayashi S 1992 J. Mater. Sci. Lett. 11 878
|
[34] |
Yang Z Y, Liu X Q, Zou X M, Wang J L, Ma C, Jiang C Z, C Ho J, Pan C F, Xia X H, Xiong J and Liao L 2017 Adv. Funct. Mater. 27 1
|
[35] |
Song X J, Xu J P, Liu L, Lai P T and Tang W M 2019 Appl. Surf. Sci. 481 1
|
[36] |
Xu J P, Wen W, Zhao X Y, Liu L, Song X J, Lai P T and Tang W M 2018 Nanotechnolgy 29 345201
|
[37] |
Bhattacharjee S, Ganapathi K L, Nath D N and Navakanta B 2015 IEEE Trans. Electron. Devices 63 2556
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|