CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES |
Prev
Next
|
|
|
Improved interfacial properties of HfGdON gate dielectric Ge MOS capacitor by optimizing Gd content |
Lin Zhou(周琳)1, Lu Liu(刘璐)1, Yu-Heng Deng(邓煜恒)1, Chun-Xia Li(李春霞)2, Jing-Ping Xu(徐静平)1 |
1 School of Optical and Electronic Information, Huazhong University of Science and Technology, Wuhan 430074, China; 2 Shenzhen Institute of Information Technology, Shenzhen 518172, China |
|
|
Abstract High-quality dielectric/Ge interface and low gate leakage current are crucial issues for high-performance nanoscaled Ge-based complementary metal-oxide-semiconductor (CMOS) device. In this paper, the interfacial and electrical properties of high-k HfGdON/LaTaON stacked gate dielectric Ge metal-oxide-semiconductor (MOS) capacitors with different gadolinium (Gd) contents are investigated. Experimental results show that when the controlling Gd content is a suitable value (e.g.,~13.16%), excellent device performances can be achieved:low interface-state density (6.93×1011 cm-2·eV-1), small flatband voltage (0.25 V), good capacitance-voltage behavior, small frequency dispersion, and low gate leakage current (2.29×10-6 A/cm2 at Vg=Vfb + 1 V). These could be attributed to the repair of oxygen vacancies, the increase of conduction band offset, and the suppression of germanate and suboxide GeOx at/near the high k/Ge interface by doping suitable Gd into HfON.
|
Received: 05 July 2019
Revised: 24 September 2019
Accepted manuscript online:
|
PACS:
|
77.55.D-
|
|
|
77.55.dj
|
(For nonsilicon electronics (Ge, III-V, II-VI, organic electronics))
|
|
77.55.F-
|
|
|
81.15.-z
|
(Methods of deposition of films and coatings; film growth and epitaxy)
|
|
Fund: Project supported by the National Key Research and Development Program of China (Grant No. 2018YFB2200500) and the National Natural Science Foundation of China (Grant Nos. 61851406 and 61274112). |
Corresponding Authors:
Jing-Ping Xu
E-mail: jpxu@hust.edu.cn
|
Cite this article:
Lin Zhou(周琳), Lu Liu(刘璐), Yu-Heng Deng(邓煜恒), Chun-Xia Li(李春霞), Jing-Ping Xu(徐静平) Improved interfacial properties of HfGdON gate dielectric Ge MOS capacitor by optimizing Gd content 2019 Chin. Phys. B 28 127703
|
[34] |
Li X F, Liu X J, Cao Y Q, Li A D, Li H and Wu D 2013 Appl. Surf. Sci. 264 783
|
[1] |
Chi On C, Kim H, Chi D, McIntyre P C and Saraswat K C 2006 IEEE T. Electron Dev. 53 1509
|
[35] |
Jiang S S, He G, Fang Z B, Wang P H, Liu Y M, Lv J G and Liu M 2018 J. Alloys Compd. 757 288
|
[2] |
Kamata Y 2019 J. Mater. Chem. C 7 2823
|
[36] |
Joshi P C, Krupanidhi S B and Mansingh A 1992 J. Appl. Phys. 72 5517
|
[37] |
Rahman M S and Evangelou E K 2011 IEEE T. Electron Dev. 58 3549
|
[3] |
Chen D, Liu Z, Lu X, Wan L, Li R, Yang Z and Li G 2019 J. Mater. Chem. C 7 2823
|
[38] |
Xu J P, Lai P T, Li C X, Zou X and Chan C L 2006 IEEE Electron Dev. Lett. 27 439
|
[4] |
Chen D, Wan L, Li J, Liu Z and Li G 2019 Solid State Electron. 151 60
|
[39] |
Terman L M 1962 Solid-State Electron. 5 285
|
[5] |
Kong X T, Zhou X L, Li S Y, Qiao L J, Liu H G, Wang W and Pan J Q 2015 Chin. Phys. Lett. 32 037301
|
[6] |
Zhang T, Pu T, Xie T, Li L, Bu Y, Wang X and Ao J P 2018 Chin. Phys. B 27 078503
|
[7] |
Caymax M, Houssa M, Pourtois G, Bellenger F, Martens K, Delabie A and Van Elshocht S 2008 Appl. Surf. Sci. 254 6094
|
[8] |
Feng J, Jing-Ping X, Yong H, Lu L and Lai P T 2014 IEEE T. Electron Dev. 61 3608
|
[9] |
Yuan W, Xu J, Liu L, Huang Y and Cheng Z 2016 Semiconductors + 37 054004
|
[10] |
Huang Y, Xu J P, Liu L, Lai P T and Tang W M 2016 Appl. Phys. Lett. 109 193504
|
[11] |
Chui C O, Ito F and Saraswat K C 2004 IEEE T. Electron Dev. 25 613
|
[12] |
Gao F, Lee S J, Pan J S, Tang L J and Kwong D L 2005 Appl. Phys. Lett. 86 113501
|
[13] |
Kim K H, Gordon R G, Ritenour A and Antoniadis D A 2007 Appl. Phys. Lett. 90 212104
|
[14] |
Li C X and Lai P T 2009 Appl. Phys. Lett. 95 022910
|
[15] |
Cockayne E 2008 J. Appl. Phys. 103 084103
|
[16] |
Zhu H, Tang C, Fonseca L R C and Ramprasad R 2012 J. Mater. Sci. 47 7399
|
[17] |
Xu H X, Xu J P, Li C X and Lai P T 2010 Appl. Phys. Lett. 97 022903
|
[18] |
Lin M H, Lan C K, Chen C C and Wu J Y 2011 Appl. Phys. Lett. 99 182105
|
[19] |
Sayan S, Nguyen N V, Ehrstein J, Chambers J J, Visokay M R, Quevedo-Lopez M A, Colombo L, Yoder D, Levin I, Fischer D A, Paunescu M, Celik O and Garfunkel E 2005 Appl. Phys. Lett. 87 212905
|
[20] |
Wang L G, Xiong Y, Xiao W, Cheng L, Du J, Tu H and van de Walle A 2014 Appl. Phys. Lett. 104 201903
|
[21] |
Huang X D, Sin J K O and Lai P T 2012 IEEE T. Device Mater. Rel. 12 306
|
[22] |
Chun W J, Ishikawa A, Fujisawa H, Takata T, Kondo J N, Hara M, Kawai M, Matsumoto Y and Domen K 2009 Mater. Charact. 60 138
|
[23] |
Uwamino Y, Ishizuka T and Yamatera H 1984 J. Electron. Spectrosc. 34 67
|
[24] |
Datta P, Majewski P and Aldinger F 2009 Mater. Charact. 60 138
|
[25] |
Dai J Y, Lee P F, Wong K H, Chan H L W and Choy C L 2003 J. Appl. Phys. 94 912
|
[26] |
Yamamoto K, Hayashi S, Niwa M, Asai M, Horii S and Miya H 2003 Appl. Phys. Lett. 83 2229
|
[27] |
Sahiner M A, Woicik J C, Gao P, McKeown P, Croft M C, Gartman M and Benapfla B 2007 Thin Solid Films 515 6548
|
[28] |
Xiong Y, Tu H, Du J, Ji M, Zhang X and Wang L 2010 Appl. Phys. Lett. 97 012901
|
[29] |
Losovyj Y B, Ketsman I, Sokolov A, Belashchenko K D, Dowben P A, Tang J and Wang Z 2007 Appl. Phys. Lett. 91 132908
|
[30] |
Ketsman I, Losovyj Y B, Sokolov A, Tang J, Wang Z, Belashchenko K D and Dowben P A 2007 Appl. Phys. A 89 489
|
[31] |
Lee J J, Shin Y, Choi J, Kim H, Hyun S, Choi S, Cho B J and Lee S H 2012 Phys. Status Solid-R 6 439
|
[32] |
Prabhakaran K and Ogino T 1995 Surf. Sci. 325 263
|
[33] |
Glorieux B, Berjoan R, Matecki M, Kammouni A and Perarnau D 2007 Appl. Surf. Sci. 253 3349
|
[34] |
Li X F, Liu X J, Cao Y Q, Li A D, Li H and Wu D 2013 Appl. Surf. Sci. 264 783
|
[35] |
Jiang S S, He G, Fang Z B, Wang P H, Liu Y M, Lv J G and Liu M 2018 J. Alloys Compd. 757 288
|
[36] |
Joshi P C, Krupanidhi S B and Mansingh A 1992 J. Appl. Phys. 72 5517
|
[37] |
Rahman M S and Evangelou E K 2011 IEEE T. Electron Dev. 58 3549
|
[38] |
Xu J P, Lai P T, Li C X, Zou X and Chan C L 2006 IEEE Electron Dev. Lett. 27 439
|
[39] |
Terman L M 1962 Solid-State Electron. 5 285
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|