Please wait a minute...
Chin. Phys. B, 2019, Vol. 28(12): 123101    DOI: 10.1088/1674-1056/ab52f2
ATOMIC AND MOLECULAR PHYSICS Prev   Next  

Dynamics of the Au+H2 reaction by time-dependent wave packet and quasi-classical trajectory methods

Yong Zhang(张勇), Chengguo Jiang(姜成果)
Department of Physics, Tonghua Normal University, Tonghua 134002, China
Abstract  Dynamics of the Au+H2 reaction are studied using time-dependent wave packet (TDWP) and quasi-classical trajectory (QCT) methods based on a new potential energy surface[Int. J. Quantum Chem. 118 e25493 (2018)]. The dynamic properties such as reaction probability, integral cross section, differential cross section and the distribution of product are studied at state-to-state level of theory. Furthermore, the present results are compared with the theoretical studies available. The results indicate that the complex-forming reaction mechanism is dominated in the reaction in the low collision energy region and the abstract reaction mechanism plays a dominant role at high collision energies. Different from previous theoretical calculations, the side-ways scattering signals are found in the present work and become more and more apparent with increasing collision energy.
Keywords:  reaction probability      integral cross section      time-dependent wave packet      quasi-classical trajectory  
Received:  30 August 2019      Revised:  15 October 2019      Accepted manuscript online: 
PACS:  31.15.xv (Molecular dynamics and other numerical methods)  
  34.50.-s (Scattering of atoms and molecules)  
  03.67.Lx (Quantum computation architectures and implementations)  
Corresponding Authors:  Yong Zhang     E-mail:  victor0536@163.com

Cite this article: 

Yong Zhang(张勇), Chengguo Jiang(姜成果) Dynamics of the Au+H2 reaction by time-dependent wave packet and quasi-classical trajectory methods 2019 Chin. Phys. B 28 123101

[36] Feit M D, Fleck J A and Steiger A 1982 J. Comput. Phys. 47 412
[1] Haruta M, Yamada N, Kobayashi T and Iijima S 1989 J. Catal. 115 301
[37] Gómez-Carrasco S and Roncero O 2006 J. Chem. Phys. 125 054102
[2] Daniel M C and Astruc D 2004 Chem. Rev. 104 293
[38] Sun Z G, Lin X, Lee S Y and Zhang D H 2009 J. Phys. Chem. A 113 4145
[3] Hashmi A S K and Hutchings G J 2006 Angew. Chem. Int. Ed. 45 7896
[39] Hase W L 1998 Classical Trajectory Simulations: Initial Conditions, A Chapter in Encyclopedia of Computational Chemistry (New York: Wiley) Vol. 1 pp. 399, 402
[4] Herzing A A, Kiely C J, Carley A F, Landon P and Hutchings G J 2008 Science 321 1331
[5] Hughes M D, Xu Y J, Jenkins P, McMorn P, Landon P, Enache, D I, Carley A F, Attard G A, Hutchings G J, King F, Stitt E H, Johnston P, Griffin K and Kiely C J 2005 Nature 437 1132
[6] Chen M S and Goodman D W 2004 Science 306 252
[7] Valden M, Lai X and Goodman D W 1998 Science 281 1647
[8] Yoon B, Häkkinen H, Landman U, Wörz A S, Antonietti J M, Abbet S, Judai K and Heiz U 2005 Science 307 403
[9] Green I X, Tang W, Neurock M and Jr. J T Y 2011 Science 333 736
[10] Balasubramanian K and Liao M Z 1988 J. Phys. Chem. 92 361
[11] Andrews L, Wang X, Manceron L and Balasubramanian K 2004 J. Phys. Chem. A 108 2936
[12] Guitou-Guichemerre M and Chambaud G 2005 J. Phys. Chem. 122 204325
[13] Zanchet A, Roncero O, Omar S, Paniagua M and Aguado A 2010 J. Chem. Phys. 132 034301
[14] Yuan J C, Cheng D H, Sun Z G and Chen M D 2014 Mol. Phys. 112 2945
[15] Yuan J C, Cheng D H and Chen M D 2014 RSC Adv. 4 36189
[16] Yuan M L, Li W T, Yuan J C and Chen M D 2018 Int. J. Quantum Chem. 118 e25493
[17] Li F, Hinton C S, Citir M, Liu F and Armentrout P B 2011 J. Chem. Phys. 134 024310
[18] Dorta-Urra A, Zanchet A, Roncero O, Aguado A and Armentrou P B 2011 J. Chem. Phys. 135 091102
[19] Dorta-Urra A, Zanchet A, Roncero O and Aguado A 2015 J. Chem. Phys. 142 154301
[20] Lee W T, He H X and Chen M D 2017 Int. J. Mod. Phys. B 31 1750039
[21] Figgen D, Rauhut G, Dolg M and Stoll H 2005 Chem. Phys. 311 227
[22] Jr Dunning T H 1989 J. Chem. Phys. 90 1007
[23] Aguado A and Paniagua M 1992 J. Chem. Phys. 96 1265
[24] Aguado A, Suarez C and Paniagua M 1993 J. Chem. Phys. 98 308
[25] Aguado A, Tablero C and Paniagua M 1998 Comput. Phys. Commun. 108 259
[26] Li W T, Yuan J C, Yuan M L, Zhang Y, Yao M H and Sun Z G 2018 Phys. Chem. Chem. Phys. 20 1039
[27] Li Y Q, Zhang Y J, Zhao J F, Zhao M Y and Ding Y 2015 Chin. Phys. B 24 113402
[28] Xu T, Zhao J, Wang X L and Meng Q T 2019 Chin. Phys. B 28 023102
[29] Zhang J, Gao S B, Wu H and Meng Q T 2015 Chin. Phys. B 24 083104
[30] Wang X L, Gao F, Gao S B, Zhang L L, Song Y Z and Meng Q T 2018 Chin. Phys. B 27 043104
[31] Xu T, Wu H, Zhang L L, Wang X L, Zhao J and Meng Q T 2019 Mol. Phys. 117 311
[32] Zhang L L, Gao S B, Song Y Z and Meng Q T 2018 J. Phys. B: At. Mol. Opt. Phys. 51 065202
[33] Gao F, Zhang L L, Zhao W L, Meng Q T and Song Y Z 2019 J. Chem. Phys. 150 224304
[34] Zhao B, Sun Z G and Guo H 2016 J. Chem. Phys. 144 064104
[35] Zhao B, Sun Z G and Guo H 2016 J. Chem. Phys. 144 214303
[36] Feit M D, Fleck J A and Steiger A 1982 J. Comput. Phys. 47 412
[37] Gómez-Carrasco S and Roncero O 2006 J. Chem. Phys. 125 054102
[38] Sun Z G, Lin X, Lee S Y and Zhang D H 2009 J. Phys. Chem. A 113 4145
[39] Hase W L 1998 Classical Trajectory Simulations: Initial Conditions, A Chapter in Encyclopedia of Computational Chemistry (New York: Wiley) Vol. 1 pp. 399, 402
[1] State-to-state integral cross sections and rate constants for the N+(3P)+HD→NH+/ND++D/H reaction: Accurate quantum dynamics studies
Hanghang Chen(陈航航), Zijiang Yang(杨紫江), and Maodu Chen(陈茂笃). Chin. Phys. B, 2022, 31(9): 098204.
[2] Integral cross sections for electron impact excitations of argon and carbon dioxide
Shu-Xing Wang(汪书兴) and Lin-Fan Zhu(朱林繁). Chin. Phys. B, 2022, 31(8): 083401.
[3] A new global potential energy surface of the ground state of SiH2+ (X2A1) system and dynamics calculations of the Si+ + H2 (v0 = 2, j0 = 0) → SiH+ + H reaction
Yong Zhang(张勇), Xiugang Guo(郭秀刚), and Haigang Yang(杨海刚). Chin. Phys. B, 2022, 31(11): 113101.
[4] Exact quantum dynamics study of the H(2S)+SiH+(X1Σ+) reaction on a new potential energy surface of SiH2+(X2A1)
Wen-Li Zhao(赵文丽), Rui-Shan Tan(谭瑞山), Xue-Cheng Cao(曹学成), Feng Gao(高峰), and Qing-Tian Meng(孟庆田). Chin. Phys. B, 2021, 30(12): 123403.
[5] Mechanism analysis of reaction S+(2D)+H2(X1Σg+)→SH+(X3Σ-)+H(2S) based on the quantum state-to-state dynamics
Jin-Yu Zhang(张金玉), Ting Xu(许婷), Zhi-Wei Ge(葛志伟), Juan Zhao(赵娟), Shou-Bao Gao(高守宝), Qing-Tian Meng(孟庆田). Chin. Phys. B, 2020, 29(6): 063101.
[6] Effect of isotope on state-to-state dynamics for reactive collision reactions O(3P)+H2+→OH++H and O(3P)+H2+→OH+H+ in ground state 12A" and first excited 12A' potential energy surfaces
Juan Zhao(赵娟), Ting Xu(许婷), Lu-Lu Zhang(张路路), Li-Fei Wang(王立飞). Chin. Phys. B, 2020, 29(2): 023105.
[7] Quasi-classical trajectory study of H+LiH (v=0, 1, 2, j=0)→Li+H2 reaction on a new global potential energy surface
Yu-Liang Wang(王玉良), De-Zhi Su(宿德志), Cun-Hai Liu(刘存海), Hui Li(李慧). Chin. Phys. B, 2019, 28(8): 083402.
[8] Non-adiabatic quantum dynamical studies of Na(3p)+HD(ν=1, j=0)→NaH/NaD+D/H reaction
Yue-Pei Wen(温月佩), Bayaer Buren(布仁巴雅尔), Mao-Du Chen(陈茂笃). Chin. Phys. B, 2019, 28(6): 063401.
[9] Reaction mechanism of D+ND→N+D2 and its state-to-state quantum dynamics
Ting Xu(许婷), Juan Zhao(赵娟), Xian-Long Wang(王宪龙), Qing-Tian Meng(孟庆田). Chin. Phys. B, 2019, 28(2): 023102.
[10] Dynamics of the CH4+O(3P)→CH3(ν=0)+OH(ν'=0) reaction
Zhong-An Jiang(蒋仲安), Ya Peng(彭亚), Ju-Shi Chen(陈举师), Gui Lan(兰桂), Hao-Yu Lin(林浩宇). Chin. Phys. B, 2018, 27(6): 063401.
[11] State-to-state dynamics of F(2P)+HO(2Π) →O(3P)+HF(1+) reaction on 13A" potential energy surface
Juan Zhao(赵娟), Hui Wu(吴慧), Hai-Bo Sun(孙海波), Li-Fei Wang(王立飞). Chin. Phys. B, 2018, 27(2): 023102.
[12] The effect of field modulation on the vibrational population of the photoassociated NaK and its dynamics
Yu Wang(王玉), Da-Guang Yue(岳大光), Xu-Cong Zhou(周旭聪), Ya-Hui Guo(郭雅慧), Qing-Tian Meng(孟庆田). Chin. Phys. B, 2017, 26(4): 043202.
[13] Intrinsic product polarization and branch ratio in theS(1D, 3P)+HD reaction on three electronic states
Lin Li(李琳), Shunle Dong(董顺乐). Chin. Phys. B, 2016, 25(9): 093401.
[14] Effects of collision energy and rotational quantum number on stereodynamics of the reactions: H(2S)+NH(v=0, j=0, 2, 5, 10)→N(4S)+H2
Wei Wang(王伟), Yong-Jiang Yu(于永江), Gang Zhao(赵刚), Chuan-Lu Yang(杨传路). Chin. Phys. B, 2016, 25(8): 083402.
[15] State-to-state quantum dynamics of N(2D)+HD (v=0, j=0) reaction
Yong Zhang(张勇). Chin. Phys. B, 2016, 25(12): 123104.
No Suggested Reading articles found!