Please wait a minute...
Chin. Phys. B, 2019, Vol. 28(12): 120503    DOI: 10.1088/1674-1056/ab55d0
GENERAL Prev   Next  

Relaxation dynamics of Kuramoto model with heterogeneous coupling

Tianwen Pan(潘天文)1, Xia Huang(黄霞)2, Can Xu(徐灿)3, Huaping Lü(吕华平)1
1 School of Physics and Electronic Engineering, Jiangsu Normal University, Xuzhou 221116, China;
2 School of Mathematics and Physics, North China Electric Power University, Beijing 102206, China;
3 Institute of Systems Science and College of Information Science and Engineering, Huaqiao University, Xiamen 361021, China
Abstract  The Landau damping which reveals the characteristic of relaxation dynamics for an equilibrium state is a universal concept in the area of complex system. In this paper, we study the Landau damping in the phase oscillator system by considering two types of coupling heterogeneity in the Kuramoto model. We show that the critical coupling strength for phase transition, which can be obtained analytically through the balanced integral equation, has the same formula for both cases. The Landau damping effects are further explained in the framework of Laplace transform, where the order parameters decay to zero in the long time limit.
Keywords:  synchronization      coupled oscillators      Landau damping  
Received:  07 October 2019      Revised:  28 October 2019      Accepted manuscript online: 
PACS:  05.45.Xt (Synchronization; coupled oscillators)  
  68.18.Jk (Phase transitions in liquid thin films)  
  89.75.-k (Complex systems)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 11905068, 11847013, 11175150, and 11605055), Postgraduate Research and Practice Innovation Project for Graduate Students of JiangSu Province, China (Grant No. KYCX18-2100), and the Scientific Research Funds of Huaqiao University, China (Grant No. 605-50Y17064).
Corresponding Authors:  Can Xu, Huaping Lü     E-mail:  xucan@hqu.edu.cn;lvhp@jsnu.edu.cn

Cite this article: 

Tianwen Pan(潘天文), Xia Huang(黄霞), Can Xu(徐灿), Huaping Lü(吕华平) Relaxation dynamics of Kuramoto model with heterogeneous coupling 2019 Chin. Phys. B 28 120503

[1] Pikovsky A, Rosenblum M and Kurths J 2003 Synchronization: a Universal Concept in Nonlinear Sciences (Cambridge: Cambridge University Press)
[2] Boccaletti S, Pisarchik A N, Genio C I and Amann A 2018 Synchronization: from Coupled Systems to Complex Networks (Cambridge: Cambridge University Press)
[3] Strogatz S 2003 Sync: The emerging science of spontaneous order (New York: Hachette Books)
[4] Kiss I Z, Zhai Y M and Hudson J L 2002 Science 296 1676
[5] Winfree A T 1967 J. Theor. Biol. 16 15
[6] Kuramoto Y 1975 Lecture Notes in Physics (New York: Springer) p. 39
[7] Acebrón J A, Bonilla L L, Vicente C J P, Ritort F and Spigler R 2005 Rev. Mod. Phys. 77 137
[8] Dorogovtsev S N, Goltsev A V and Mendes J F F 2008 Rev. Mod. Phys. 80 1275
[9] Boccaletti S, Almendral J A, Guan S, Leyva I, Liu Z, Sendiña-Nadal I S, Wang Z and Zou Y 2016 Phys. Rep. 660 1
[10] Huang X, Dong J, Jia W J, Zheng Z G and Xu C 2018 Front. Phys. 13 130506
[11] Bolhasani E, Azizi Y, Valizadeh A and Perc M 2017 Phys. Rev. E 95 032207
[12] Wang Q Y, Perc M, Duan Z S and Chen G R 2009 Phys. Rev. E 80 026206
[13] Ott E and Antonsen T M 2008 Chaos 18 037113
[14] Ott E and Antonsen T M 2009 Chaos 19 023117
[15] Strogatz S H and Mirollo R E 1991 J. Stat. Phys. 63 613
[16] Strogatz S H, Mirollo R E and Paul C M 1992 Phys. Rev. Lett. 68 2730
[17] Yoon S, Sindaci M S, Goltsev A V and Mendes J F F 2015 Phys. Rev. E 91 032814
[18] Daido H 2015 Phys. Rev. E 91 012925
[19] Xu C, Gao J, Xiang H R, Jia W J, Guan S G and Zheng Z G 2016 Phys. Rev. E 94 062204
[20] Fernandez B, Gérard-Varet D and Giacomin G 2015 Ann. Henri Poincaré 17 1793
[21] Dietert H and Fernandez B 2018 Proce. Roy. Soc. A: Math. Phys. Eng. Sci. 474 20180467
[22] Dietert H, Fernandez B and Gérard-Varet D 2018 Journal: Communications on Pure and Applied Mathematics 71 953
[23] Xu C, Boccaletti S, Guan S G and Zheng Z G 2018 Phys. Rew. E 98 050202
[24] Sonnenschein B, Peron T K DM, Rodrigues F A, Kurths J and Schimansky-Geier L 2015 Phys. Rev. E 91 062910
[25] Hong H and Strogatz S H 2011 Phys. Rev. Lett. 106 054102
[26] Wang H Q and Li X 2011 Phys. Rev. E 83 066214
[27] Yuan D, Zhang M and Yang J Z 2014 Phys. Rev. E 89 012910
[28] Bi H J, Hu X, Boccaletti S, Wang X G, Zou Y, Liu Z H and Guan S G 2016 Phys. Rev. Lett. 117 204101
[29] Zhang X Y, Hu X, Kurths J and Liu Z H 2013 Phys. Rev. E 88 010802
[30] Hu X, Boccaletti S, Huang W W, Zhang X Y, Liu Z H, Guan S G and Lai C H 2014 Sci. Rep. 4 7262
[31] Xu C, Sun Y T, Gao J, Qiu T, Zheng Z G and Guan S G 2016 Sci. Rep. 6 21926
[32] Xiao Y, Jia W J, Xu C, Lü H P and Zheng Z G 2017 Europhys. Lett. 118 60005
[33] Bi H J, Li Y, Zhou L and Guan S G 2017 Front. Phys. 12 126801
[34] Qiu T, Zhang Y, Liu J, Bi H J, Boccaletti S, Liu Z H and Guan S G 2015 Sci. Rep. 5 18235
[1] Diffusive field coupling-induced synchronization between neural circuits under energy balance
Ya Wang(王亚), Guoping Sun(孙国平), and Guodong Ren(任国栋). Chin. Phys. B, 2023, 32(4): 040504.
[2] Hopf bifurcation and phase synchronization in memristor-coupled Hindmarsh-Rose and FitzHugh-Nagumo neurons with two time delays
Zhan-Hong Guo(郭展宏), Zhi-Jun Li(李志军), Meng-Jiao Wang(王梦蛟), and Ming-Lin Ma(马铭磷). Chin. Phys. B, 2023, 32(3): 038701.
[3] Influence of coupling asymmetry on signal amplification in a three-node motif
Xiaoming Liang(梁晓明), Chao Fang(方超), Xiyun Zhang(张希昀), and Huaping Lü(吕华平). Chin. Phys. B, 2023, 32(1): 010504.
[4] Power-law statistics of synchronous transition in inhibitory neuronal networks
Lei Tao(陶蕾) and Sheng-Jun Wang(王圣军). Chin. Phys. B, 2022, 31(8): 080505.
[5] Effect of astrocyte on synchronization of thermosensitive neuron-astrocyte minimum system
Yi-Xuan Shan(单仪萱), Hui-Lan Yang(杨惠兰), Hong-Bin Wang(王宏斌), Shuai Zhang(张帅), Ying Li(李颖), and Gui-Zhi Xu(徐桂芝). Chin. Phys. B, 2022, 31(8): 080507.
[6] Multi-target ranging using an optical reservoir computing approach in the laterally coupled semiconductor lasers with self-feedback
Dong-Zhou Zhong(钟东洲), Zhe Xu(徐喆), Ya-Lan Hu(胡亚兰), Ke-Ke Zhao(赵可可), Jin-Bo Zhang(张金波),Peng Hou(侯鹏), Wan-An Deng(邓万安), and Jiang-Tao Xi(习江涛). Chin. Phys. B, 2022, 31(7): 074205.
[7] Synchronization of nanowire-based spin Hall nano-oscillators
Biao Jiang(姜彪), Wen-Jun Zhang(张文君), Mehran Khan Alam, Shu-Yun Yu(于淑云), Guang-Bing Han(韩广兵), Guo-Lei Liu(刘国磊), Shi-Shen Yan(颜世申), and Shi-Shou Kang(康仕寿). Chin. Phys. B, 2022, 31(7): 077503.
[8] Effects of Landau damping and collision on stimulated Raman scattering with various phase-space distributions
Shanxiu Xie(谢善秀), Yong Chen(陈勇), Junchen Ye(叶俊辰), Yugu Chen(陈雨谷), Na Peng(彭娜), and Chengzhuo Xiao(肖成卓). Chin. Phys. B, 2022, 31(5): 055201.
[9] Synchronization in multilayer networks through different coupling mechanisms
Xiang Ling(凌翔), Bo Hua(华博), Ning Guo(郭宁), Kong-Jin Zhu(朱孔金), Jia-Jia Chen(陈佳佳), Chao-Yun Wu(吴超云), and Qing-Yi Hao(郝庆一). Chin. Phys. B, 2022, 31(4): 048901.
[10] Collective behavior of cortico-thalamic circuits: Logic gates as the thalamus and a dynamical neuronal network as the cortex
Alireza Bahramian, Sajjad Shaukat Jamal, Fatemeh Parastesh, Kartikeyan Rajagopal, and Sajad Jafari. Chin. Phys. B, 2022, 31(2): 028901.
[11] Explosive synchronization: From synthetic to real-world networks
Atiyeh Bayani, Sajad Jafari, and Hamed Azarnoush. Chin. Phys. B, 2022, 31(2): 020504.
[12] Measure synchronization in hybrid quantum-classical systems
Haibo Qiu(邱海波), Yuanjie Dong(董远杰), Huangli Zhang(张黄莉), and Jing Tian(田静). Chin. Phys. B, 2022, 31(12): 120503.
[13] Finite-time complex projective synchronization of fractional-order complex-valued uncertain multi-link network and its image encryption application
Yong-Bing Hu(胡永兵), Xiao-Min Yang(杨晓敏), Da-Wei Ding(丁大为), and Zong-Li Yang(杨宗立). Chin. Phys. B, 2022, 31(11): 110501.
[14] Finite-time synchronization of uncertain fractional-order multi-weighted complex networks with external disturbances via adaptive quantized control
Hongwei Zhang(张红伟), Ran Cheng(程然), and Dawei Ding(丁大为). Chin. Phys. B, 2022, 31(10): 100504.
[15] Finite-time Mittag—Leffler synchronization of fractional-order complex-valued memristive neural networks with time delay
Guan Wang(王冠), Zhixia Ding(丁芝侠), Sai Li(李赛), Le Yang(杨乐), and Rui Jiao(焦睿). Chin. Phys. B, 2022, 31(10): 100201.
No Suggested Reading articles found!