|
|
The effect of field modulation on the vibrational population of the photoassociated NaK and its dynamics |
Yu Wang(王玉)1, Da-Guang Yue(岳大光)1, Xu-Cong Zhou(周旭聪)1, Ya-Hui Guo(郭雅慧)2, Qing-Tian Meng(孟庆田)1 |
1 School of Physics and Electronics, Shandong Normal University, Ji'nan 250014, China;
2 College of Science, China University of Petrolium, Qingdao 266580, China |
|
|
Abstract This paper presents calculation results for the photoassociation of a NaK molecule with a two-color modulated laser and gives a detailed analysis about them. For the two-step photoassociation process in intense fields, the effect of two-color modulated laser parameters, such as relative phase, envelope period, and laser intensity, on the population of the molecular electronic state can be obtained by solving the time-dependent Schrödinger equation through the quantum wave packet method. The numerical simulation shows not only that the influence of laser parameters on the vibrational distribution presents some regularity, but also that a higher population in the ground electronic state can be realized through adjusting these laser parameters.
|
Received: 22 November 2016
Revised: 28 December 2016
Accepted manuscript online:
|
PACS:
|
32.80.Qk
|
(Coherent control of atomic interactions with photons)
|
|
34.50.Rk
|
(Laser-modified scattering and reactions)
|
|
33.80.-b
|
(Photon interactions with molecules)
|
|
82.20.Bc
|
(State selected dynamics and product distribution)
|
|
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 11674198) and the Natural Science Foundations of Shandong Province, China (Grant Nos. ZR2014AM022 and ZR2015AL023). Partial financial support from Taishan Scholar Project of Shandong Province is also acknowledged. |
Corresponding Authors:
Qing-Tian Meng
E-mail: qtmeng@sdnu.edu.cn
|
Cite this article:
Yu Wang(王玉), Da-Guang Yue(岳大光), Xu-Cong Zhou(周旭聪), Ya-Hui Guo(郭雅慧), Qing-Tian Meng(孟庆田) The effect of field modulation on the vibrational population of the photoassociated NaK and its dynamics 2017 Chin. Phys. B 26 043202
|
[1] |
Wang Y and Meng Q T 2015 J. At. Mol. Sci. 6 216
|
[2] |
Krems R V, Stwalley W C and Friedrich B 2009 Cold molecules: theory, experiment, applications (State of Florida: CRC Press)
|
[3] |
Quemener G and Julienne P S 2012 Chem. Rev. 112 4949
|
[4] |
Carr L D, DeMille D, Krems R V and Ye J 2009 New J. Phys. 11 055049
|
[5] |
DeMille M M, Kidd J R, Ruggeri V, Palmatier M A, Goldman D, Odunsi A, Okonofua F, Grigorenko E, Schulz L O, Bonne-Tamir B, Lu R B, Parnas J, Pakstis A J and Kidd K K 2002 Hum. Genet. 111 521
|
[6] |
Góral K, Santos L and Lewenstein M 2002 Phys. Rev. Lett. 88 170406
|
[7] |
Krems R V 2008 Phys. Chem. Chem. Phys. 10 4079
|
[8] |
Moore M G and Vardi A 2002 Phys. Rev. Lett. 88 160402
|
[9] |
Ni K K, Ospelkaus S, Wang D, Quéméner G, Neyenhuis B, De Miranda M H G, Bohn J L, Ye J and Jin D S 2010 Nature 464 1324
|
[10] |
Thorsheim H R, Weiner J and Julienne P S 1987 Phys. Rev. Lett. 58 2420
|
[11] |
Greiner M, Regal C A and Jin D S 2003 Nature 426 537
|
[12] |
Zwierlein M W, Stan C A, Schunck C H, Raupach S M, Gupta S, Hadzibabic Z and Ketterle W 2003 Phys. Rev. Lett. 91 250401
|
[13] |
de Lima E F 2015 J. Low. Temp. Phys. 180 161
|
[14] |
Luc-Koenig E, Vatasescu M and Masnou-Seeuws F 2004 Eur. Phys. J. D 31 239
|
[15] |
Wright M J, Gensemer S D, Vala J, Kosloff R and Gould P L 2005 Phys. Rev. Lett. 95 063001
|
[16] |
Zhang C Z, Zheng B, Niu Y Q, Wei W and Meng Q T 2014 Sci. China-Phys. Mech. Astron. 57 1879
|
[17] |
Koch C P, Kosloff R, Luc-Koenig E, Masnou-Seeuws F and Crubellier A 2006 J. Phys. B: At. Mol. Opt. Phys. 39 S1017
|
[18] |
Koch C P, Luc-Koenig E and Masnou-Seeuws F 2006 Phys. Rev. A 73 033408
|
[19] |
Sugawara Y, Goban A, Minemoto S and Sakai H 2008 Phys. Rev. A 77 031403
|
[20] |
Salzmann W, Mullins T, Eng J, Albert M, Wester R, Weidemüller M, Merli A, Weber S M, Sauer F, Plewicki M, Weise F, Wöste L and Lindinger A. 2008 Phys. Rev. Lett. 100 233003
|
[21] |
Zhang W, Huang Y, Xie T, Wang G R and Cong S L 2010 Phys. Rev. A 82 063411
|
[22] |
Zhang W, Wang G R and Cong S L 2011 Phys. Rev. A 83 045401
|
[23] |
Zhang J, Gao S B, Wu H and Meng Q T 2015 J. Phys. Chem. A 119 8959
|
[24] |
Meng Q T, Yang G H, Sun H L, Han K L and Lou N Q 2003 Phys. Rev. A 67 063202
|
[25] |
Meng Q T, Yang G H and Han K L 2003 Int. J. Quantum Chem. 95 30
|
[26] |
Meng Q T, Liu X G, Zhang Q G and Han K L 2005 Chem. Phys. 316 93
|
[27] |
Zhang C Z, Zheng B, Wang J and Meng Q T 2013 Chin. Phys. B 22 023401
|
[28] |
Zhang C X, Niu Y Q and Meng Q T 2014 Chin. Phys. B 23 103301
|
[29] |
Aymar M and Dulieu O 2007 Mol. Phys. 105 1733
|
[30] |
Nikolov A N, Ensher J R, Eyler E E, Wang H, Stwalley W C and Gould P L 2000 Phys. Rev. Lett. 84 246
|
[31] |
Zhang W, Zhao Z Y, Xie T, Wang G R, Huang Y and Cong S L 2011 Phys. Rev. A 84 053418
|
[32] |
Marston C C and Balint-Kurti G G 1989 J. Chem. Phys. 91 3571
|
[33] |
Bandrauk A D and Shen H 1991 Chem. Phys. Lett. 176 428
|
[34] |
Cooley J W and Tukey J W 1965 Math. Comput. 19 297
|
[35] |
Heather R and Metiu H 1987 J. Chem. Phys. 86 5009
|
[36] |
Zhang H, Han K L, He G Z and Lou N Q 1998 Chem. Phys. Lett. 289 494
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|