Please wait a minute...
Chin. Phys. B, 2019, Vol. 28(12): 120502    DOI: 10.1088/1674-1056/ab5188
GENERAL Prev   Next  

Soliton excitations and interaction in alpha helical protein with interspine coupling in modified nonlinear Schrödinger equation

Ming-Ming Li(李明明)1, Cheng-Lai Hu(胡成来)1, Jun Wu(吴俊)2, Xian-Jing Lai(来娴静)3, Yue-Yue Wang(王悦悦)1
1 Zhejiang Provincial Key Laboratory of Chemical Utilization of Forestry Biomass, School of Sciences, Zhejiang A&F University, Hangzhou 311300, China;
2 School of Humanity and Law, Zhejiang A&F University, Hangzhou 311300, China;
3 College of Basic Science, Zhejiang Shuren University, Hangzhou 310015, China
Abstract  The three-coupling modified nonlinear Schrödinger (MNLS) equation with variable-coefficients is used to describe the dynamics of soliton in alpha helical protein. This MNLS equation with variable-coefficients is firstly transformed to the MNLS equation with constant-coefficients by similarity transformation. And then the one-soliton and two-soliton solutions of the variable-coefficient-MNLS equation are obtained by solving the constant-coefficient-MNLS equation with Hirota method. The effects of different parameter conditions on the soliton solutions are discussed in detail. The interaction between two solitons is also discussed. Our results are helpful to understand the soliton dynamics in alpha helical protein.
Keywords:  soliton, three-coupling nonlinear modified Schrö      dinger equation, similarity transformation  
Received:  31 July 2019      Revised:  18 September 2019      Accepted manuscript online: 
PACS:  05.45.Yv (Solitons)  
  02.70.Wz (Symbolic computation (computer algebra))  
  87.10.Ed (Ordinary differential equations (ODE), partial differential equations (PDE), integrodifferential models)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 11874324 and 11705164), the Natural Science Foundation of Zhejiang Province of China (Grant Nos. LY17A040011, LY17F050011, and LR20A050001), the Foundation of “New Century 151 Talent Engineering” of Zhejiang Province of China, and the Youth Talent Program of Zhejiang A & F University.
Corresponding Authors:  Yue-Yue Wang     E-mail:  yyshiyan@126.com

Cite this article: 

Ming-Ming Li(李明明), Cheng-Lai Hu(胡成来), Jun Wu(吴俊), Xian-Jing Lai(来娴静), Yue-Yue Wang(王悦悦) Soliton excitations and interaction in alpha helical protein with interspine coupling in modified nonlinear Schrödinger equation 2019 Chin. Phys. B 28 120502

[35] Zhang B, Zhang X L and Dai C Q 2017 Nonlinear Dyn. 87 2385
[1] Pang X F 2011 Phys. Life Rev. 8 264
[36] Ding D J, Jin D Q and Dai C Q 2017 Therm. Sci. 21 1701
[2] Pang X F 2014 Biophys. Rev. Lett. 9 1
[37] Dai C Q, Zhou G Q, Chen R P, Lai X J and Zheng J 2017 Nonlinear Dyn. 88 2629
[3] Bakhshi A K, Ladik J, Seel M and Otto P 1986 Chem. Phys. 108 233
[38] Qin X 2018 Chin. Phys. B 27 100203
[4] Hol and Wim G J 1985 Prog. Biophys. Mol. Biology 45 149
[39] Han L J, Huang Y H and Liu H 2014 Commun. Nonlinear Sci. Num. Simul. 19 3063
[5] Davydov A S and Kislukha N I 1973 Phys. Status Solidi 59 465
[40] Xu T, Tian B, Zhang C, Meng X H and Xing Lü 2009 J. Phys. A: Math. Theor. 42 415201
[6] Scott A C 1982 Phys. Rev. A 26 578
[7] Davydov A S 1979 Phys. Scr. 20 387
[8] Biswas A, Moran A, Milovic, D, Majid F and Biswas K C 2010 Math. Biosci. 227 68
[9] Dai C Q, Chen R P, Wang Y Y and Fan Y 2017 Nonlinear Dyn. 87 1675
[10] Ren Y, Liu C, Yang Z Y and Yang W L 2018 Phys. Rev. E 98 062223
[11] Zhou G and Ru G 2013 Prog. Electromagn. Res. 141 75
[12] Huang W H 2009 Chin. Phys. B 18 3163
[13] Duan W S 2004 Chin. Phys. B 13 598
[14] Zhang G T, Huang J J and Alatancang 2012 Acta Phys. Sin. 61 140205 (in Chinese)
[15] Qi G W, Hou G L and Alatancang 2011 Chin. Phys. B 20 124601
[16] Song K, Hou G L and Alatancang 2013 Chin. Phys. B 22 094601
[17] Brown D W 1988 Phys. Rev. A 37 5010
[18] Davydov A S 1981 Physica D: Nonlinear Phenomena 3 1
[19] Brizhik L, Eremko A, Piette B and Zakrzewski W 2004 Phys. Rev. E 70 031914
[20] Ichinose S 1991 Chaos, Solitons & Fractals 1 501
[21] Förner W 1997 Molecular Modeling Annual 2 103
[22] Pang X F and Müller K H 2000 J. Phys.: Condens. Matter 12 885
[23] Daniel M and Latha M M 2001 Physica A: Statistical Mechanics and its Applications 298 351
[24] Veni S Saravana and Latha M M 2014 Commun. Nonlinear Sci. Num. Simul. 19 2758
[25] Kong L Q, Liu J, Jin D Q, Ding D J and Dai C Q 2017 Nonlinear Dyn. 87 83
[26] Qin B, Tian B, Liu W J, Liu L C, Qu Q X and Zhang H Q 2011 SIAM J. Appl. Math. 71 1317
[27] Liu J, Jin D Q, Zhang X L, Wang Y Y and Dai C Q 2018 Optik 158 97
[28] Liu C, Yang Z Y, Yang W L and Akhmediev N 2019 JOSA B 36 1294
[29] Liu W J, Yang C Y, Liu M L, Yu W T, Zhang Y J and Lei M 2017 Phys. Rev. E 96 042201
[30] Liu C, Yang Z Y and Yang W L 2018 Chaos: An Interdisciplinary Journal of Nonlinear Science 28 083110
[31] Wang N 2012 Chin. Phys. B 21 010202
[32] Zakharov V E and Gelash A A 2013 Phys. Rev. Lett. 111 054101
[33] Ren Y, Wang X, Liu C, Yang Z Y and Yang W L 2018 Commun. Nonlinear Sci. Num. Simul. 63 161
[34] Liu C, Ren Y, Yang Z Y and Yang W L 2017 Chaos: An Interdisciplinary Journal of Nonlinear Science 27 083120
[35] Zhang B, Zhang X L and Dai C Q 2017 Nonlinear Dyn. 87 2385
[36] Ding D J, Jin D Q and Dai C Q 2017 Therm. Sci. 21 1701
[37] Dai C Q, Zhou G Q, Chen R P, Lai X J and Zheng J 2017 Nonlinear Dyn. 88 2629
[38] Qin X 2018 Chin. Phys. B 27 100203
[39] Han L J, Huang Y H and Liu H 2014 Commun. Nonlinear Sci. Num. Simul. 19 3063
[40] Xu T, Tian B, Zhang C, Meng X H and Xing Lü 2009 J. Phys. A: Math. Theor. 42 415201
[1] All-optical switches based on three-soliton inelastic interaction and its application in optical communication systems
Shubin Wang(王树斌), Xin Zhang(张鑫), Guoli Ma(马国利), and Daiyin Zhu(朱岱寅). Chin. Phys. B, 2023, 32(3): 030506.
[2] Soliton molecules, T-breather molecules and some interaction solutions in the (2+1)-dimensional generalized KDKK equation
Yiyuan Zhang(张艺源), Ziqi Liu(刘子琪), Jiaxin Qi(齐家馨), and Hongli An(安红利). Chin. Phys. B, 2023, 32(3): 030505.
[3] Modulational instability of a resonantly polariton condensate in discrete lattices
Wei Qi(漆伟), Xiao-Gang Guo(郭晓刚), Liang-Wei Dong(董亮伟), and Xiao-Fei Zhang(张晓斐). Chin. Phys. B, 2023, 32(3): 030502.
[4] Matrix integrable fifth-order mKdV equations and their soliton solutions
Wen-Xiu Ma(马文秀). Chin. Phys. B, 2023, 32(2): 020201.
[5] Localized nonlinear waves in a myelinated nerve fiber with self-excitable membrane
Nkeh Oma Nfor, Patrick Guemkam Ghomsi, and Francois Marie Moukam Kakmeni. Chin. Phys. B, 2023, 32(2): 020504.
[6] Charge self-trapping in two strand biomolecules: Adiabatic polaron approach
D Chevizovich, S Zdravković, A V Chizhov, and Z Ivić. Chin. Phys. B, 2023, 32(1): 010506.
[7] Quantitative analysis of soliton interactions based on the exact solutions of the nonlinear Schrödinger equation
Xuefeng Zhang(张雪峰), Tao Xu(许韬), Min Li(李敏), and Yue Meng(孟悦). Chin. Phys. B, 2023, 32(1): 010505.
[8] Reciprocal transformations of the space-time shifted nonlocal short pulse equations
Jing Wang(王静), Hua Wu(吴华), and Da-Jun Zhang(张大军). Chin. Phys. B, 2022, 31(12): 120201.
[9] Riemann-Hilbert approach and N double-pole solutions for a nonlinear Schrödinger-type equation
Guofei Zhang(张国飞), Jingsong He(贺劲松), and Yi Cheng(程艺). Chin. Phys. B, 2022, 31(11): 110201.
[10] Fusionable and fissionable waves of (2+1)-dimensional shallow water wave equation
Jing Wang(王静), Xue-Li Ding(丁学利), and Biao Li(李彪). Chin. Phys. B, 2022, 31(10): 100502.
[11] Quantum fields presentation and generating functions of symplectic Schur functions and symplectic universal characters
Denghui Li(李登慧), Fei Wang(王菲), and Zhaowen Yan(颜昭雯). Chin. Phys. B, 2022, 31(8): 080202.
[12] Oscillation properties of matter-wave bright solitons in harmonic potentials
Shu-Wen Guan(关淑文), Ling-Zheng Meng(孟令正), and Li-Chen Zhao(赵立臣). Chin. Phys. B, 2022, 31(8): 080506.
[13] Solutions of novel soliton molecules and their interactions of (2 + 1)-dimensional potential Boiti-Leon-Manna-Pempinelli equation
Hong-Cai Ma(马红彩), Yi-Dan Gao(高一丹), and Ai-Ping Deng(邓爱平). Chin. Phys. B, 2022, 31(7): 070201.
[14] Nonlinear dynamical wave structures of Zoomeron equation for population models
Ahmet Bekir and Emad H M Zahran. Chin. Phys. B, 2022, 31(6): 060401.
[15] A nonlocal Boussinesq equation: Multiple-soliton solutions and symmetry analysis
Xi-zhong Liu(刘希忠) and Jun Yu(俞军). Chin. Phys. B, 2022, 31(5): 050201.
No Suggested Reading articles found!