|
|
Controllable laning phase for oppositely driven disk systems |
Lin Liu(刘琳)1, Ke Li(李珂)1, Xiao-Lin Zhou(周晓琳)1, Lin-Li He(何林李)2, Lin-Xi Zhang(章林溪)1 |
1 Department of Physics, Zhejiang University, Hangzhou 310027, China; 2 Department of Physics, Wenzhou University, Wenzhou 325035, China |
|
|
Abstract A two-dimensional binary driven disk system embedded by impermeable tilted plates is investigated through nonequilibrium computer simulations. It is well known that a binary disk system in which two particle species are driven in opposite directions exhibits jammed, phase separated, disordered, and laning states. The presence of tilted plates can not only advance the formation of laning phase, but also effectively stabilize laning phase by suppressing massively drifting behavior perpendicular to the driving force. The lane width distribution can be controlled easily by the interplate distance. The collective behavior of driven particles in laning phase is guided by the funnel-shaped confinements constituted by the neighboring tilted plates. Our results provide the important clues for investigating the mechanism of laning formation in driven system.
|
Received: 10 August 2019
Revised: 17 September 2019
Accepted manuscript online:
|
PACS:
|
05.70.Ln
|
(Nonequilibrium and irreversible thermodynamics)
|
|
66.10.cd
|
(Thermal diffusion and diffusive energy transport)
|
|
87.18.Gh
|
(Cell-cell communication; collective behavior of motile cells)
|
|
05.70.-a
|
(Thermodynamics)
|
|
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 21873082, 21674082, and 21674096) and the Natural Science Foundation of Zhejiang Province, China (Grant No. LY19B040006). |
Corresponding Authors:
Lin-Li He, Lin-Xi Zhang
E-mail: linlihe@wzu.edu.cn;lxzhang@zju.edu.cn
|
Cite this article:
Lin Liu(刘琳), Ke Li(李珂), Xiao-Lin Zhou(周晓琳), Lin-Li He(何林李), Lin-Xi Zhang(章林溪) Controllable laning phase for oppositely driven disk systems 2019 Chin. Phys. B 28 120501
|
[35] |
Tsiok E N, Dudalov D E, Fomin Yu D and Ryzhov V N 2015 Phys. Rev. E 92 032110
|
[1] |
Cross M C and Hohenberg P C 1993 Rev. Mod. Phys. 65 851
|
[36] |
Qi W and Dijkstra M 2015 Soft Matter 11 2852
|
[2] |
Mikhailov A S and Showalter K 2006 Phys. Rep. 425 79
|
[37] |
Redner G S, Hagan M F and Baskaran A 2013 Phys. Rev. Lett. 110 055701
|
[3] |
Katz S, Lebowitz J and Spohn H 1983 Phys. Rev. B 28 1655
|
[38] |
Tung C, Harder J, Valeriani C and Cacciuto A 2016 Soft Matter 12 555
|
[4] |
Marro J and Dickman R 1999 Nonequilibrium phase transitions in lattice models (Cambridge: Cambridge University Press) pp. 50-127
|
[39] |
Chen J, Hua Y, Zhou X L and Zhang L X 2017 Sci. Rep. 7 15006
|
[5] |
Leunissen M E, Christova C G, Hynninen A P, Royall C P, Campbell A I, Imhof A, Dijkstra M, van Roij R and van Blaaderen A 2005 Nature 437 235
|
[40] |
Kaiser A, Sokolov A and Aranson I S 2015 Eur. Phys. J. Special Topics 224 1275
|
[6] |
Vissers T, Wysocki A, Rex M, Loewen H, Royall C P, Imhof A and van Blaaderen A 2011 Soft Matter 7 2352
|
[7] |
Dzubiella J, Hoffmann G P and Löwen H 2009 Phys. Rev. E 79 021402
|
[8] |
Glanz T and Löwen H 2012 J. Phys.: Condens. Matter 24 464114
|
[9] |
Klymko K, Geissler P L and Whitelam S 2016 Phys. Rev. E 94 022608
|
[10] |
Poncet A, Bénichou O, Démery V and Oshanin G 2017 Phys. Rev. Lett. 118 118002
|
[11] |
Morfill G E, Konopka U, Kretschmer M, Rubin-Zuzic M, Thomas H M, Zhdanov S K and Tsytovich V 2006 New J. Phys. 8 7
|
[12] |
Sutterlin K R, Wysocki A, Ivlev A V, Rath C, Thomas H M, Rubin-Zuzic M, Goedheer W J, Fortov V E, Lipaev A M and Molotkov V I 2009 Phys. Rev. Lett. 102 085003
|
[13] |
Ciamarra M P, Coniglio A and Nicodemi M 2005 J. Phys.: Condens. Matter 17 S2549
|
[14] |
Jiang R, Helbing D, Shukla P and Wu Q 2006 Physica A 368 567
|
[15] |
Kölbl R and Helbing D 2003 New J. Phys. 5 48
|
[16] |
Chowdhury D, Nishinari K and Schadschneider A 2004 Phase Transit. 77 601
|
[17] |
Wensink H H and Löwen H 2012 J. Phys.: Condens. Matter. 24 464130
|
[18] |
Yamao M, Naoki H and Ishii S 2011 PLoS One 6 e27950
|
[19] |
Jerome Delhommelle 2005 Phys. Rev. E 71 016705
|
[20] |
Chakrabarti J, Dzubiella J and Löwen H 2003 Europhys. Lett. 61 415
|
[21] |
Chakrabarti J, Dzubiella J and Löwen H 2004 Phys. Rev. E 70 012401
|
[22] |
McCandlish R, Aparna Baskaran and Michael F 2012 Soft Matter 8 2527
|
[23] |
Reichhardt C and Reichhardt C J O 2018 Soft Matter 14 490
|
[24] |
Yang Y, McDermott D, Olson Reichhardt C J and Reichhardt C 2017 Phys. Rev. E 95 042902
|
[25] |
McDermott D, Yang Y, Olson Reichhardt C J and Reichhardt C 2019 Phys. Rev. E 99 042601
|
[26] |
Reichhardt C, Thibault J, Papanikolaou S and Reichhardt C J O 2018 Phys. Rev. E 98 022603
|
[27] |
Reichhardt C and Reichhardt C J O 2017 Rep. Prog. Phys. 80 026501
|
[28] |
Bhattacharya S and Higgins M J 1993 Phys. Rev. Lett. 70 2617
|
[29] |
Helbing D, Farkas I J and Vicsek T 2000 Phys. Rev. Lett. 84 1240
|
[30] |
Braun O M, Dauxois T and Paliy M V 1997 Phys. Rev. Lett. 78 1295
|
[31] |
Gutierrez J, Silhanek A V, Van de Vondel J, Gillijns W and Moshchalkov V 2009 Phys. Rev. B 80 140514
|
[32] |
Solon A P, Fily Y, Baskaran A, Cates M E, Kafri Y, Kardar M and Tailleur J 2015 Nat. Phys. 11 673
|
[33] |
Mijalkov M and Volpe G 2013 Soft Matter 9 6376
|
[34] |
Sipos O, Nagy K, Di Leonardo R and Galajda P 2015 Phys. Rev. Lett. 114 258104
|
[35] |
Tsiok E N, Dudalov D E, Fomin Yu D and Ryzhov V N 2015 Phys. Rev. E 92 032110
|
[36] |
Qi W and Dijkstra M 2015 Soft Matter 11 2852
|
[37] |
Redner G S, Hagan M F and Baskaran A 2013 Phys. Rev. Lett. 110 055701
|
[38] |
Tung C, Harder J, Valeriani C and Cacciuto A 2016 Soft Matter 12 555
|
[39] |
Chen J, Hua Y, Zhou X L and Zhang L X 2017 Sci. Rep. 7 15006
|
[40] |
Kaiser A, Sokolov A and Aranson I S 2015 Eur. Phys. J. Special Topics 224 1275
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|