Please wait a minute...
Chin. Phys. B, 2019, Vol. 28(12): 120501    DOI: 10.1088/1674-1056/ab4e86
GENERAL Prev   Next  

Controllable laning phase for oppositely driven disk systems

Lin Liu(刘琳)1, Ke Li(李珂)1, Xiao-Lin Zhou(周晓琳)1, Lin-Li He(何林李)2, Lin-Xi Zhang(章林溪)1
1 Department of Physics, Zhejiang University, Hangzhou 310027, China;
2 Department of Physics, Wenzhou University, Wenzhou 325035, China
Abstract  A two-dimensional binary driven disk system embedded by impermeable tilted plates is investigated through nonequilibrium computer simulations. It is well known that a binary disk system in which two particle species are driven in opposite directions exhibits jammed, phase separated, disordered, and laning states. The presence of tilted plates can not only advance the formation of laning phase, but also effectively stabilize laning phase by suppressing massively drifting behavior perpendicular to the driving force. The lane width distribution can be controlled easily by the interplate distance. The collective behavior of driven particles in laning phase is guided by the funnel-shaped confinements constituted by the neighboring tilted plates. Our results provide the important clues for investigating the mechanism of laning formation in driven system.
Keywords:  driven system      tilted plates      laning phase      drifting behavior  
Received:  10 August 2019      Revised:  17 September 2019      Accepted manuscript online: 
PACS:  05.70.Ln (Nonequilibrium and irreversible thermodynamics)  
  66.10.cd (Thermal diffusion and diffusive energy transport)  
  87.18.Gh (Cell-cell communication; collective behavior of motile cells)  
  05.70.-a (Thermodynamics)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 21873082, 21674082, and 21674096) and the Natural Science Foundation of Zhejiang Province, China (Grant No. LY19B040006).
Corresponding Authors:  Lin-Li He, Lin-Xi Zhang     E-mail:  linlihe@wzu.edu.cn;lxzhang@zju.edu.cn

Cite this article: 

Lin Liu(刘琳), Ke Li(李珂), Xiao-Lin Zhou(周晓琳), Lin-Li He(何林李), Lin-Xi Zhang(章林溪) Controllable laning phase for oppositely driven disk systems 2019 Chin. Phys. B 28 120501

[35] Tsiok E N, Dudalov D E, Fomin Yu D and Ryzhov V N 2015 Phys. Rev. E 92 032110
[1] Cross M C and Hohenberg P C 1993 Rev. Mod. Phys. 65 851
[36] Qi W and Dijkstra M 2015 Soft Matter 11 2852
[2] Mikhailov A S and Showalter K 2006 Phys. Rep. 425 79
[37] Redner G S, Hagan M F and Baskaran A 2013 Phys. Rev. Lett. 110 055701
[3] Katz S, Lebowitz J and Spohn H 1983 Phys. Rev. B 28 1655
[38] Tung C, Harder J, Valeriani C and Cacciuto A 2016 Soft Matter 12 555
[4] Marro J and Dickman R 1999 Nonequilibrium phase transitions in lattice models (Cambridge: Cambridge University Press) pp. 50-127
[39] Chen J, Hua Y, Zhou X L and Zhang L X 2017 Sci. Rep. 7 15006
[5] Leunissen M E, Christova C G, Hynninen A P, Royall C P, Campbell A I, Imhof A, Dijkstra M, van Roij R and van Blaaderen A 2005 Nature 437 235
[40] Kaiser A, Sokolov A and Aranson I S 2015 Eur. Phys. J. Special Topics 224 1275
[6] Vissers T, Wysocki A, Rex M, Loewen H, Royall C P, Imhof A and van Blaaderen A 2011 Soft Matter 7 2352
[7] Dzubiella J, Hoffmann G P and Löwen H 2009 Phys. Rev. E 79 021402
[8] Glanz T and Löwen H 2012 J. Phys.: Condens. Matter 24 464114
[9] Klymko K, Geissler P L and Whitelam S 2016 Phys. Rev. E 94 022608
[10] Poncet A, Bénichou O, Démery V and Oshanin G 2017 Phys. Rev. Lett. 118 118002
[11] Morfill G E, Konopka U, Kretschmer M, Rubin-Zuzic M, Thomas H M, Zhdanov S K and Tsytovich V 2006 New J. Phys. 8 7
[12] Sutterlin K R, Wysocki A, Ivlev A V, Rath C, Thomas H M, Rubin-Zuzic M, Goedheer W J, Fortov V E, Lipaev A M and Molotkov V I 2009 Phys. Rev. Lett. 102 085003
[13] Ciamarra M P, Coniglio A and Nicodemi M 2005 J. Phys.: Condens. Matter 17 S2549
[14] Jiang R, Helbing D, Shukla P and Wu Q 2006 Physica A 368 567
[15] Kölbl R and Helbing D 2003 New J. Phys. 5 48
[16] Chowdhury D, Nishinari K and Schadschneider A 2004 Phase Transit. 77 601
[17] Wensink H H and Löwen H 2012 J. Phys.: Condens. Matter. 24 464130
[18] Yamao M, Naoki H and Ishii S 2011 PLoS One 6 e27950
[19] Jerome Delhommelle 2005 Phys. Rev. E 71 016705
[20] Chakrabarti J, Dzubiella J and Löwen H 2003 Europhys. Lett. 61 415
[21] Chakrabarti J, Dzubiella J and Löwen H 2004 Phys. Rev. E 70 012401
[22] McCandlish R, Aparna Baskaran and Michael F 2012 Soft Matter 8 2527
[23] Reichhardt C and Reichhardt C J O 2018 Soft Matter 14 490
[24] Yang Y, McDermott D, Olson Reichhardt C J and Reichhardt C 2017 Phys. Rev. E 95 042902
[25] McDermott D, Yang Y, Olson Reichhardt C J and Reichhardt C 2019 Phys. Rev. E 99 042601
[26] Reichhardt C, Thibault J, Papanikolaou S and Reichhardt C J O 2018 Phys. Rev. E 98 022603
[27] Reichhardt C and Reichhardt C J O 2017 Rep. Prog. Phys. 80 026501
[28] Bhattacharya S and Higgins M J 1993 Phys. Rev. Lett. 70 2617
[29] Helbing D, Farkas I J and Vicsek T 2000 Phys. Rev. Lett. 84 1240
[30] Braun O M, Dauxois T and Paliy M V 1997 Phys. Rev. Lett. 78 1295
[31] Gutierrez J, Silhanek A V, Van de Vondel J, Gillijns W and Moshchalkov V 2009 Phys. Rev. B 80 140514
[32] Solon A P, Fily Y, Baskaran A, Cates M E, Kafri Y, Kardar M and Tailleur J 2015 Nat. Phys. 11 673
[33] Mijalkov M and Volpe G 2013 Soft Matter 9 6376
[34] Sipos O, Nagy K, Di Leonardo R and Galajda P 2015 Phys. Rev. Lett. 114 258104
[35] Tsiok E N, Dudalov D E, Fomin Yu D and Ryzhov V N 2015 Phys. Rev. E 92 032110
[36] Qi W and Dijkstra M 2015 Soft Matter 11 2852
[37] Redner G S, Hagan M F and Baskaran A 2013 Phys. Rev. Lett. 110 055701
[38] Tung C, Harder J, Valeriani C and Cacciuto A 2016 Soft Matter 12 555
[39] Chen J, Hua Y, Zhou X L and Zhang L X 2017 Sci. Rep. 7 15006
[40] Kaiser A, Sokolov A and Aranson I S 2015 Eur. Phys. J. Special Topics 224 1275
[1] Performance optimization on finite-time quantum Carnot engines and refrigerators based on spin-1/2 systems driven by a squeezed reservoir
Haoguang Liu(刘浩广), Jizhou He(何济洲), and Jianhui Wang(王建辉). Chin. Phys. B, 2023, 32(3): 030503.
[2] Entanglement and thermalization in the extended Bose-Hubbard model after a quantum quench: A correlation analysis
Xiao-Qiang Su(苏晓强), Zong-Ju Xu(许宗菊), and You-Quan Zhao(赵有权). Chin. Phys. B, 2023, 32(2): 020506.
[3] Thermodynamically consistent model for diblock copolymer melts coupled with an electric field
Xiaowen Shen(沈晓文) and Qi Wang(王奇). Chin. Phys. B, 2022, 31(4): 048201.
[4] Detection of multi-spin interaction of a quenched XY chain by the average work and the relative entropy
Xiu-Xing Zhang(张修兴), Fang-Jv Li(李芳菊), Kai Wang(王凯), Jing Xue(薛晶), Guang-Wen Huo(霍广文), Ai-Ping Fang(方爱平), and Hong-Rong Li(李宏荣). Chin. Phys. B, 2021, 30(9): 090504.
[5] Erratum to “Designing thermal demultiplexer: Splitting phonons by negative mass and genetic algorithm optimization”
Yu-Tao Tan(谭宇涛), Lu-Qin Wang(王鲁钦), Zi Wang(王子), Jiebin Peng(彭洁彬), and Jie Ren(任捷). Chin. Phys. B, 2021, 30(9): 099902.
[6] Nonequilibrium free energy and information flow of a double quantum-dot system with Coulomb coupling
Zhiyuan Lin(林智远), Tong Fu(付彤), Juying Xiao(肖菊英), Shanhe Su(苏山河), Jincan Chen(陈金灿), and Yanchao Zhang(张艳超). Chin. Phys. B, 2021, 30(8): 080501.
[7] Designing thermal demultiplexer: Splitting phonons by negative mass and genetic algorithm optimization
Yu-Tao Tan(谭宇涛), Lu-Qin Wang(王鲁钦), Zi Wang(王子), Jiebin Peng(彭洁彬), and Jie Ren(任捷). Chin. Phys. B, 2021, 30(3): 036301.
[8] Impact of counter-rotating-wave term on quantum heat transfer and phonon statistics in nonequilibrium qubit-phonon hybrid system
Chen Wang(王晨), Lu-Qin Wang(王鲁钦), and Jie Ren(任捷). Chin. Phys. B, 2021, 30(3): 030506.
[9] The landscape and flux of a minimum network motif, Wu Xing
Kun Zhang(张坤), Ashley Xia(夏月), and Jin Wang(汪劲). Chin. Phys. B, 2020, 29(12): 120504.
[10] Nonequilibrium reservoir engineering of a biased coherent conductor for hybrid energy transport in nanojunctions
"Bing-Zhong Hu(胡柄中), Lei-Lei Nian(年磊磊), and Jing-Tao Lü(吕京涛). Chin. Phys. B, 2020, 29(12): 120505.
[11] Quantum quenches in the Dicke model: Thermalization and failure of the generalized Gibbs ensemble
Xiao-Qiang Su(苏晓强) and You-Quan Zhao(赵有权). Chin. Phys. B, 2020, 29(12): 120506.
[12] A polaron theory of quantum thermal transistor in nonequilibrium three-level systems
Chen Wang(王晨), Da-Zhi Xu(徐大智). Chin. Phys. B, 2020, 29(8): 080504.
[13] Symmetry properties of fluctuations in an actively driven rotor
He Li(李赫), Xiang Yang(杨翔), Hepeng Zhang(张何朋). Chin. Phys. B, 2020, 29(6): 060502.
[14] Energy cooperation in quantum thermoelectric systems withmultiple electric currents
Yefeng Liu(刘叶锋), Jincheng Lu(陆金成), Rongqian Wang(王荣倩), Chen Wang(王晨), Jian-Hua Jiang(蒋建华). Chin. Phys. B, 2020, 29(4): 040504.
[15] Fluctuation theorem for entropy production at strong coupling
Y Y Xu(徐酉阳), J Liu(刘娟), M Feng(冯芒). Chin. Phys. B, 2020, 29(1): 010501.
No Suggested Reading articles found!