Please wait a minute...
Chin. Phys. B, 2019, Vol. 28(11): 114205    DOI: 10.1088/1674-1056/ab47f7
Special Issue: SPECIAL TOPIC — Strong-field atomic and molecular physics
SPECIAL TOPIC—Strong-field atomic and molecular physics Prev   Next  

Role of Bloch oscillation in high-order harmonic generation from periodic structure

Lu Liu(刘璐)1, Jing Zhao(赵晶)2, Jian-Min Yuan(袁建民)1,2, Zeng-Xiu Zhao(赵增秀)2
1 Graduate School of China Academy of Engineering Physics, Beijing 100193, China;
2 Department of Physics, College of Liberal Arts and Science, National University of Defense Technology, Changsha 410073, China
Abstract  The high-order harmonic generation from a model solid structure driven by an intense laser pulse is investigated using the semiconductor Bloch equations (SBEs). The main features of harmonic spectrum from SBEs agree well with the result of the time-dependent Schrödinger equation (TDSE), and the cut-off energy can be precisely estimated by the recollision model. With increasing the field strength, the harmonic spectrum shows an extra plateau. Based on the temporal population of electron and the time-frequency analysis, the harmonics in the extra plateau are generated by the Bloch oscillation. Due to the ultrafast time response of the Bloch electron, the generated harmonics provide a potential source of shorter isolated attosecond pulse.
Keywords:  high-order harmonic generation      attosecond pulse      semiconductor Bloch equations      time-dependent Schrö      dinger equation  
Received:  30 July 2019      Revised:  23 September 2019      Accepted manuscript online: 
PACS:  42.65.Ky (Frequency conversion; harmonic generation, including higher-order harmonic generation)  
  32.80.Rm (Multiphoton ionization and excitation to highly excited states)  
  42.65.Re (Ultrafast processes; optical pulse generation and pulse compression)  
Fund: Project supported by the NSAF, China (Grant No. U1730449) and the National Natural Science Foundation of China (Grant Nos. 11904341, 11774322, 91850201, and 11874066).
Corresponding Authors:  Zeng-Xiu Zhao     E-mail:  zhaozengxiu@nudt.edu.cn

Cite this article: 

Lu Liu(刘璐), Jing Zhao(赵晶), Jian-Min Yuan(袁建民), Zeng-Xiu Zhao(赵增秀) Role of Bloch oscillation in high-order harmonic generation from periodic structure 2019 Chin. Phys. B 28 114205

[36] Zener C 1934 Proceedings of the Royal Society of London A:Mathematical, Physical and Engineering Sciences 145 523
[1] Ferray M, L'Huillier A, Li X F, Lompre L A, Mainfray G and Manus C 1988 J. Phys. B 21 L31
[37] Wu M, Browne D A, Schafer K J and Gaarde M B 2016 Phys. Rev. A 94 063403
[2] L'Huillier A and Balcou P 1993 Phys. Rev. Lett. 70 774
[38] Bloch F 1929 Z. Phys. 52 555
[3] Zhao J and Zhao Z X 2010 Chin. Phys. Lett. 27 063301
[39] Mücke O D 2011 Phys. Rev. B 84 081202
[4] Wu Y Y, Dong Q L, Wang Z H, Liu P and Zhang J 2018 Chin. Phys. Lett. 35 095201
[5] Gaumnitz T, Jain A, Pertot Y, Huppert M, Jordan I, Ardana-Lamas F and Wörner H J 2017 Opt. Express 25 27506
[40] Liu L, Zhao J, Dong W, Liu J, Huang Y and Zhao Z 2017 Phys. Rev. A 96 053403
[6] Itatani J, Levesque J, Zeidler D, Niikura H, Pépin H, Kieffer J C, Corkum P B and Villeneuve D M 2004 Nature 432 867
[41] Du T Y and Bian X B 2017 Opt. Express 25 151
[7] Zhang B, zhao J and Zhao Z X 2018 Chin. Phys. Lett. 35 043201
[42] Jia G R, Huang X H and Bian X B 2017 Opt. Express 25 23654
[43] Wannier H G 1959 Elements of Solid State Theory (Cambridge:Cambridge University Press)
[8] Ghimire S, Dichiara A D, Sistrunk E, Agostini P, Dimauro L F and Reis D A 2010 Nat. Phys. 7 138
[9] Vampa G, McDonald C R, Orlando G, Klug D D, Corkum P B and Brabec T 2014 Phys. Rev. Lett. 113 073901
[44] Wannier G H 1960 Phys. Rev. 117 432
[10] Jiang S, Chen J, Wei H, Yu C, Lu R and Lin C D 2018 Phys. Rev. Lett. 120 253201
[45] Mendez E E and Bastard G 1993 Physics Today 46 34
[11] Schubert O, Hohenleutner M, Langer F, Urbanek B, Lange C, Huttner U, Golde D, Meier T, Kira M and Koch S W 2014 Nat. Photon. 8 119
[46] Mendez E E, Agulló-Rueda F and Hong J M 1988 Phys. Rev. Lett. 60 2426
[12] Hohenleutner M, Langer F, Schubert O, Knorr M, Huttner U, Koch S W, Kira M and Huber R 2015 Nature 523 572
[47] Huang T, Zhu X, Li L, Liu X, Lan P and Lu P 2017 Phys. Rev. A 96 043425
[13] Luu T T, Garg M, Kruchinin S Y, Moulet A, Hassan M T and Goulielmakis E 2015 Nature 521 498
[48] Wang Z, Park H, Lai Y H, Xu J, Blaga C I, Yang F, Agostini P and Dimauro L F 2017 Nat. Commun. 8 1
[14] Yu C, Zhang X, Jiang S, Cao X, Yuan G, Wu T, Bai L and Lu R 2016 Phys. Rev. A 94 013846
[49] Hansen K K, Bauer D and Madsen L B 2018 Phys. Rev. A 97 043424
[15] You Y S, Reis D A and Ghimire S 2017 Nat. Phys. 13 345
[50] Golde D, Meier T and Koch S W 2008 Phys. Rev. B 77 075330
[16] Liu H, Li Y, You Y S, Ghimire S, Heinz T F and Reis D A 2017 Nat. Phys. 13 262
[51] McDonald C R, Vampa G, Corkum P B and Brabec T 2015 Phys. Rev. A 92 033845
[17] Ndabashimiye G, Ghimire S, Wu M, Browne D A, Schafer K J, Gaarde M B and Reis D A 2016 Nature 534 520
[52] Liu L, Zhao J, Yuan J and Zhao Z 2017 Sci. Sin-Phys. Mech. Astron. 47 033006
[18] Jin J Z, Xiao X R, Liang H, Wang M X, Chen S G, Gong Q and Peng L Y 2018 Phys. Rev. A 97 043420
[19] Zhao K, Xu S Y, Jiang Y J and Wei Z Y 2018 Acta Phys. Sin. 67 124203(in Chinese)
[20] McDonald C R, Amin K S, Aalmalki S and Brabec T 2017 Phys. Rev. Lett. 119 183902
[21] Osika E N, Chacón A, Ortmann L, Suárez N, Pérez-Hernández J A, Szafran B, Ciappina M F, Sols F, Landsman A S and Lewenstein M 2017 Phys. Rev. X 7 021017
[22] Vampa G, Hammond T J, Thiré N, Schmidt B E, Légaré F, McDonald C R, Brabec T, Klug D D and Corkum P B 2015 Phys. Rev. Lett. 115 193603
[23] Lanin A A, Stepanov E A, Fedotov A B and Zheltikov A M 2017 Optica 4 516
[24] Tancogne-Dejean N, Mücke O D, Kärtner F X and Rubio A 2017 Phys. Rev. Lett. 118 087403
[25] Meier T, von Plessen G, Thomas P and Koch S W 1994 Phys. Rev. Lett. 73 902
[26] Golde D, Meier T and Koch S W 2006 J. Opt. Soc. Am. B 23 2559
[27] Wu M, Ghimire S, Reis D A, Schafer K J and Gaarde M B 2015 Phys. Rev. A 91 043839
[28] Korbman M, Kruchinin S Y and Yakovlev V S 2013 New J. Phys. 15 013006
[29] Tamaya T, Ishikawa A, Ogawa T and Tanaka K 2016 Phys. Rev. Lett. 116 016601
[30] Huttner U, Schuh K, Moloney J V and Koch S W 2016 J. Opt. Soc. Am. B 33 C22
[31] Corkum P B 1993 Phys. Rev. Lett. 71 1994
[32] Lewenstein M, Balcou P, Ivanov M Y, L'Huillier A and Corkum P B 1994 Phys. Rev. A 49 2117
[33] Vampa G, McDonald C R, Orlando G, Corkum P B and Brabec T 2015 Phys. Rev. B 91 064302
[34] Guan Z, Zhou X X and Bian X B 2016 Phys. Rev. A 93 033852
[35] Ghimire S, Ndabashimiye G, Dichiara A D, Sistrunk E, Stockman M I, Agostini P, Dimauro L F and Reis D A 2014 J. Phys. B:At. Mol. Opt. Phys. 47 204030
[36] Zener C 1934 Proceedings of the Royal Society of London A:Mathematical, Physical and Engineering Sciences 145 523
[37] Wu M, Browne D A, Schafer K J and Gaarde M B 2016 Phys. Rev. A 94 063403
[38] Bloch F 1929 Z. Phys. 52 555
[39] Mücke O D 2011 Phys. Rev. B 84 081202
[40] Liu L, Zhao J, Dong W, Liu J, Huang Y and Zhao Z 2017 Phys. Rev. A 96 053403
[41] Du T Y and Bian X B 2017 Opt. Express 25 151
[42] Jia G R, Huang X H and Bian X B 2017 Opt. Express 25 23654
[43] Wannier H G 1959 Elements of Solid State Theory (Cambridge:Cambridge University Press)
[44] Wannier G H 1960 Phys. Rev. 117 432
[45] Mendez E E and Bastard G 1993 Physics Today 46 34
[46] Mendez E E, Agulló-Rueda F and Hong J M 1988 Phys. Rev. Lett. 60 2426
[47] Huang T, Zhu X, Li L, Liu X, Lan P and Lu P 2017 Phys. Rev. A 96 043425
[48] Wang Z, Park H, Lai Y H, Xu J, Blaga C I, Yang F, Agostini P and Dimauro L F 2017 Nat. Commun. 8 1
[49] Hansen K K, Bauer D and Madsen L B 2018 Phys. Rev. A 97 043424
[50] Golde D, Meier T and Koch S W 2008 Phys. Rev. B 77 075330
[51] McDonald C R, Vampa G, Corkum P B and Brabec T 2015 Phys. Rev. A 92 033845
[52] Liu L, Zhao J, Yuan J and Zhao Z 2017 Sci. Sin-Phys. Mech. Astron. 47 033006
[1] All-optical switches based on three-soliton inelastic interaction and its application in optical communication systems
Shubin Wang(王树斌), Xin Zhang(张鑫), Guoli Ma(马国利), and Daiyin Zhu(朱岱寅). Chin. Phys. B, 2023, 32(3): 030506.
[2] Phase-coherence dynamics of frequency-comb emission via high-order harmonic generation in few-cycle pulse trains
Chang-Tong Liang(梁畅通), Jing-Jing Zhang(张晶晶), and Peng-Cheng Li(李鹏程). Chin. Phys. B, 2023, 32(3): 033201.
[3] Spectral shift of solid high-order harmonics from different channels in a combined laser field
Dong-Dong Cao(曹冬冬), Xue-Fei Pan(潘雪飞), Jun Zhang(张军), and Xue-Shen Liu(刘学深). Chin. Phys. B, 2023, 32(3): 034204.
[4] Coupled-generalized nonlinear Schrödinger equations solved by adaptive step-size methods in interaction picture
Lei Chen(陈磊), Pan Li(李磐), He-Shan Liu(刘河山), Jin Yu(余锦), Chang-Jun Ke(柯常军), and Zi-Ren Luo(罗子人). Chin. Phys. B, 2023, 32(2): 024213.
[5] Quantitative analysis of soliton interactions based on the exact solutions of the nonlinear Schrödinger equation
Xuefeng Zhang(张雪峰), Tao Xu(许韬), Min Li(李敏), and Yue Meng(孟悦). Chin. Phys. B, 2023, 32(1): 010505.
[6] High-order harmonic generation of the cyclo[18]carbon molecule irradiated by circularly polarized laser pulse
Shu-Shan Zhou(周书山), Yu-Jun Yang(杨玉军), Yang Yang(杨扬), Ming-Yue Suo(索明月), Dong-Yuan Li(李东垣), Yue Qiao(乔月), Hai-Ying Yuan(袁海颖), Wen-Di Lan(蓝文迪), and Mu-Hong Hu(胡木宏). Chin. Phys. B, 2023, 32(1): 013201.
[7] Effect of laser focus in two-color synthesized waveform on generation of soft x-ray high harmonics
Yanbo Chen(陈炎波), Baochang Li(李保昌), Xuhong Li(李胥红), Xiangyu Tang(唐翔宇), Chi Zhang(张弛), and Cheng Jin(金成). Chin. Phys. B, 2023, 32(1): 014203.
[8] Probing subcycle spectral structures and dynamics of high-order harmonic generation in crystals
Long Lin(林龙), Tong-Gang Jia(贾铜钢), Zhi-Bin Wang(王志斌), and Peng-Cheng Li(李鹏程). Chin. Phys. B, 2022, 31(9): 093202.
[9] Tunable spectral shift of high-order harmonic generation in atoms using a sinusoidally phase-modulated pulse
Yue Qiao(乔月), Jun Wang(王俊), Yan Yan(闫妍), Simeng Song(宋思蒙), Zhou Chen(陈洲), Aihua Liu(刘爱华), Jigen Chen(陈基根), Fuming Guo(郭福明), and Yujun Yang(杨玉军). Chin. Phys. B, 2022, 31(6): 064214.
[10] Photoelectron momentum distributions of Ne and Xe dimers in counter-rotating circularly polarized laser fields
Zhi-Xian Lei(雷志仙), Qing-Yun Xu(徐清芸), Zhi-Jie Yang(杨志杰), Yong-Lin He(何永林), and Jing Guo(郭静). Chin. Phys. B, 2022, 31(6): 063202.
[11] Data-driven parity-time-symmetric vector rogue wave solutions of multi-component nonlinear Schrödinger equation
Li-Jun Chang(常莉君), Yi-Fan Mo(莫一凡), Li-Ming Ling(凌黎明), and De-Lu Zeng(曾德炉). Chin. Phys. B, 2022, 31(6): 060201.
[12] Exact solutions of the Schrödinger equation for a class of hyperbolic potential well
Xiao-Hua Wang(王晓华), Chang-Yuan Chen(陈昌远), Yuan You(尤源), Fa-Lin Lu(陆法林), Dong-Sheng Sun(孙东升), and Shi-Hai Dong(董世海). Chin. Phys. B, 2022, 31(4): 040301.
[13] Generation of elliptical isolated attosecond pulse from oriented H2+ in a linearly polarized laser field
Yun-He Xing(邢云鹤), Jun Zhang(张军), Xiao-Xin Huo(霍晓鑫), Qing-Yun Xu(徐清芸), and Xue-Shen Liu(刘学深). Chin. Phys. B, 2022, 31(4): 043203.
[14] Decoding the electron dynamics in high-order harmonic generation from asymmetric molecular ions in elliptically polarized laser fields
Cai-Ping Zhang(张彩萍) and Xiang-Yang Miao(苗向阳). Chin. Phys. B, 2022, 31(4): 043301.
[15] Enhancement of isolated attosecond pulse generation by using long gas medium
Yueying Liang(梁玥瑛), Xinkui He(贺新奎), Kun Zhao(赵昆), Hao Teng(滕浩), and Zhiyi Wei(魏志义). Chin. Phys. B, 2022, 31(4): 043302.
No Suggested Reading articles found!