Please wait a minute...
Chin. Phys. B, 2019, Vol. 28(11): 114206    DOI: 10.1088/1674-1056/ab48f1
ELECTROMAGNETISM, OPTICS, ACOUSTICS, HEAT TRANSFER, CLASSICAL MECHANICS, AND FLUID DYNAMICS Prev   Next  

Double-passage mechanical cooling in a coupled optomechanical system

Qing-Xia Mu(穆青霞)1, Chao Lang(郎潮)1, Wen-Zhao Zhang(张闻钊)2
1 Mathematics and Physics Department, North China Electric Power University, Beijing 102206, China;
2 Beijing Computational Science Research Center(CSRC), Beijing 100193, China
Abstract  We consider a three-mode optomechanical system where two cavity modes are coupled to a common mechanical oscillator. We focus on the resolved sideband limit and illustrate the relation between the significant parameters of the system and the instantaneous-state mean phonon number of the oscillator cooled to the ground state, particularly at the early stage of the evolution. It is worth noting that the optical coupling sets up a correlation between the two cavity modes, which has significant effect on the cooling process. Using numerical solutions, we find that the inter-cavity coupling will decrease the cooling effect when both cavities have the same effective optomechanical coupling. However, when the effective optomechanical couplings are different, the cooling effect will be strongly improved by selecting appropriate range of inter-cavity coupling.
Keywords:  optomechanical system      ground-state cooling      quantum optics  
Received:  12 June 2019      Revised:  31 July 2019      Accepted manuscript online: 
PACS:  42.50.-p (Quantum optics)  
  07.10.Cm (Micromechanical devices and systems)  
  42.50.Wk (Mechanical effects of light on material media, microstructures and particles)  
Fund: Project supported by the Fundamental Research Funds for the Central Universities, China (Grant No. 2018MS056) and the National Natural Science Foundation of China (Grant Nos. 11605055 and 11574082).
Corresponding Authors:  Wen-Zhao Zhang     E-mail:  zhangwz@csrc.ac.cn

Cite this article: 

Qing-Xia Mu(穆青霞), Chao Lang(郎潮), Wen-Zhao Zhang(张闻钊) Double-passage mechanical cooling in a coupled optomechanical system 2019 Chin. Phys. B 28 114206

[36] Li G, Xiao X, Li Y and Wang X 2018 Phys. Rev. A 97 023801
[1] Vitali D, Gigan S, Ferreira A, Böhm H R, Tombesi P, Guerreiro A, Vedral V, Zeilinger A and Aspelmeyer M 2007 Phys. Rev. Lett. 98 030405
[37] Oh S, Shim Y P, Fei J, Friesen M and Hu X 2013 Phys. Rev. A 87 022332
[2] Wang Y D and Clerk A A 2013 Phys. Rev. Lett. 110 253601
[38] Oh S, Hu X, Nori F and Kais S 2016 Sci. Rep. 6 20824
[3] Aspelmeyer M, Kippenberg T J and Marquardt F 2014 Rev. Mod. Phys. 86 1391
[39] Zheng C, Jiang X, Hua S, Chang L, Li G, Fan H and Xiao M 2012 Opt. Express 20 18319
[4] Liu Y C, Hu Y W, Wong C W, Xiao Y F 2013 Chin. Phys. B 22 114213
[40] Sato Y, Tanaka Y, Upham J, Takahashi Y, Asano T and Noda S 2012 Nat. Photon. 6 56
[5] Regal C A, Teufel J D and Lehnert K W 2008 Nat. Phys. 4 555
[41] Li B B, Xiao Y F, Zou C L, Jiang X F, Liu Y C, Sun F W and Li Y 2012 Appl. Phys. Lett. 100 021108
[6] Zhang J Q, Li Y, Feng M and Xu Y 2012 Phys. Rev. A 86 053806
[42] He B, Yang L and Xiao M 2016 Phys. Rev. A 94 031802
[7] Mancini S, Giovannetti V, Vitali D and Tombesi P 2002 Phys. Rev. Lett. 88 120401
[43] Sch ö nleber D W, Eisfeld A and El-Ganainy R 2016 New J. Phys. 18 045014
[8] Bokje, Nunnenkamp A and Girvin S M 2011 Phys. Rev. Lett. 107 123601
[44] Walls D F and Milburn G J 1994 Quantum Optics (Berlin:Springer)
[9] Gall, C, Sangouard N, Piro N, Gisin N and Kippenberg T J 2014 Phys. Rev. Lett. 112 143602
[45] Gardiner C W and Zoller P 2000 Quantum Noise (Berlin:Springer)
[10] Triana J F, Estrada A F and Pachón L A 2016 Phys. Rev. Lett. 116 183602
[11] Sarma B and Sarma A K 2016 Phys. Rev. A 93 033845
[12] Tetard L, Passian A, Venmar K T, Lynch R M, Voy B H, Shekhawat G, Dravid V P and Thundat T 2008 Nat. Nanotechnol. 3 501-505
[13] LaHaye, M D, Buu O, Camarota B and Schwab K C 2004 Science 304 74
[14] B P Abbott et al 2016 Phys. Rev. Lett. 116 061102
[15] Wilson-Rae I, Nooshi N, Zwerger W and Kippenberg T J 2007 Phys. Rev. Lett. 99 093901
[16] Li Y, Wu L A and Wang Z D 2011 Phys. Rev. A 83 043804
[17] Karuza M, Molinelli C, Galassi M, Biancofiore C, Natali R, Tombesi P, Di Giuseppe G and Vitali D 2012 New J. Phys. 14 095015
[18] Corbitt T, Wipf C, Bodiya T, Ottaway D, Sigg D, Smith N, Whitcomb S and Mavalvala N 2007 Phys. Rev. Lett. 99 160801
[19] Poggio M, Degen C L, Mamin H J and Rugar D 2007 Phys. Rev. Lett. 99 017201
[20] Elste F, Girvin S M and Clerk A A 2009 Phys. Rev. Lett. 102 207209
[21] Teufel J D, Donner T, Li D, Harlow J W, Allman M S, Cicak K, Sirois A J, Whittaker J D, Lehnert K W and Simmonds R W 2011 Nature 475 359
[22] Chan J, Mayer Alegre T P, Safavi-Naeini A H, Hill J T, Krause A, Gröblacher S, Aspelmeyer M and Painter O 2011 Nature 478 89
[23] Ritsch H, Domokos P, Brennecke F and Esslinger T 2013 Rev. Mod. Phys. 85 553
[24] Liu Y L and Liu Y X 2017 Phys. Rev. A 96 023812
[25] Liu Y C, Xiao Y F, Luan X and Wong C W 2013 Phys. Rev. Lett. 110 153606
[26] Xu M, Jäger S B, Schütz, Cooper J, Morigi G, Holl and M J 2016 Phys. Rev. Lett. 116 153002
[27] Zhang W Z, Cheng J, Li W D and Zhou L 2016 Phys. Rev. A 93 063853
[28] Lai D G, Zou F, Hou B P, Xiao Y F and Liao J Q 2018 Phys. Rev. A 98 023860
[29] Ockeloen-Korppi C F, Gely M F, Damskägg E, Jenkins M, Steele G A and Sillanpää M A 2019 Phys. Rev. A 99 023826
[30] Wang M, Lu X Y, Wang Y D, You J Q and Wu Y 2016 Phys. Rev. A 94 053807
[31] Guo Y, Li K, Nie W and Li Y 2014 Phys. Rev. A 90 053841
[32] Liu Y C, Xiao Y F, Luan X, Gong Q and Wong C W 2015 Phys. Rev. A 91 033818
[33] Zheng L L, Yin T S, Bin Q, Lü X Y and Wu Y 2019 Phys. Rev. A 99 013804
[34] Yan J K, Zhu X F and Chen B 2018 Chin. Phys. B 27 074214
[35] Karuza M, Molinelli C, Galassi M, Biancofiore C, Natali R, Tombesi P, Di G and Vitali D 2012 New J. Phys. 14 095015
[36] Li G, Xiao X, Li Y and Wang X 2018 Phys. Rev. A 97 023801
[37] Oh S, Shim Y P, Fei J, Friesen M and Hu X 2013 Phys. Rev. A 87 022332
[38] Oh S, Hu X, Nori F and Kais S 2016 Sci. Rep. 6 20824
[39] Zheng C, Jiang X, Hua S, Chang L, Li G, Fan H and Xiao M 2012 Opt. Express 20 18319
[40] Sato Y, Tanaka Y, Upham J, Takahashi Y, Asano T and Noda S 2012 Nat. Photon. 6 56
[41] Li B B, Xiao Y F, Zou C L, Jiang X F, Liu Y C, Sun F W and Li Y 2012 Appl. Phys. Lett. 100 021108
[42] He B, Yang L and Xiao M 2016 Phys. Rev. A 94 031802
[43] Sch ö nleber D W, Eisfeld A and El-Ganainy R 2016 New J. Phys. 18 045014
[44] Walls D F and Milburn G J 1994 Quantum Optics (Berlin:Springer)
[45] Gardiner C W and Zoller P 2000 Quantum Noise (Berlin:Springer)
[1] Quantum properties of nonclassical states generated by an optomechanical system with catalytic quantum scissors
Heng-Mei Li(李恒梅), Bao-Hua Yang(杨保华), Hong-Chun Yuan(袁洪春), and Ye-Jun Xu(许业军). Chin. Phys. B, 2023, 32(1): 014202.
[2] Nonreciprocal coupling induced entanglement enhancement in a double-cavity optomechanical system
Yuan-Yuan Liu(刘元元), Zhi-Ming Zhang(张智明), Jun-Hao Liu(刘军浩), Jin-Dong Wang(王金东), and Ya-Fei Yu(於亚飞). Chin. Phys. B, 2022, 31(9): 094203.
[3] Direct measurement of two-qubit phononic entangled states via optomechanical interactions
A-Peng Liu(刘阿鹏), Liu-Yong Cheng(程留永), Qi Guo(郭奇), Shi-Lei Su(苏石磊), Hong-Fu Wang(王洪福), and Shou Zhang(张寿). Chin. Phys. B, 2022, 31(8): 080307.
[4] Photon blockade in a cavity-atom optomechanical system
Zhong Ding(丁忠) and Yong Zhang(张勇). Chin. Phys. B, 2022, 31(7): 070304.
[5] Quantum properties near the instability boundary in optomechanical system
Han-Hao Fang(方晗昊), Zhi-Jiao Deng(邓志姣), Zhigang Zhu(朱志刚), and Yan-Li Zhou(周艳丽). Chin. Phys. B, 2022, 31(3): 030308.
[6] Tunable optomechanically induced transparency and fast-slow light in a loop-coupled optomechanical system
Qinghong Liao(廖庆洪), Xiaoqian Wang(王晓倩), Gaoqian He(何高倩), and Liangtao Zhou(周良涛). Chin. Phys. B, 2021, 30(9): 094205.
[7] Light-shift induced by two unbalanced spontaneous decay rates in EIT (CPT) spectroscopies under Ramsey pulse excitation
Xiaoyan Liu(刘晓艳), Xu Zhao(赵旭), Jianfang Sun(孙剑芳), Zhen Xu(徐震), and Zhengfeng Hu(胡正峰). Chin. Phys. B, 2021, 30(8): 083203.
[8] Signal-recycled weak measurement for ultrasensitive velocity estimation
Sen-Zhi Fang(方森智), Yang Dai(戴阳), Qian-Wen Jiang(姜倩文), Hua-Tang Tan(谭华堂), Gao-Xiang Li(李高翔), and Qing-Lin Wu(吴青林). Chin. Phys. B, 2021, 30(6): 060601.
[9] Controllable four-wave mixing response in a dual-cavity hybrid optomechanical system
Lei Shang(尚蕾), Bin Chen(陈彬), Li-Li Xing(邢丽丽), Jian-Bin Chen(陈建宾), Hai-Bin Xue(薛海斌), and Kang-Xian Guo(郭康贤). Chin. Phys. B, 2021, 30(5): 054209.
[10] Controlling multiple optomechanically induced transparency in the distant cavity-optomechanical system
Rui-Jie Xiao(肖瑞杰), Gui-Xia Pan(潘桂侠), and Xiao-Ming Xiu(修晓明). Chin. Phys. B, 2021, 30(3): 034209.
[11] Tunable ponderomotive squeezing in an optomechanical system with two coupled resonators
Qin Wu(吴琴). Chin. Phys. B, 2021, 30(2): 020303.
[12] Ground-state cooling based on a three-cavity optomechanical system in the unresolved-sideband regime
Jing Wang(王婧). Chin. Phys. B, 2021, 30(2): 024204.
[13] Nearly invariant boundary entanglement in optomechanical systems
Shi-Wei Cui(崔世威), Zhi-Jiao Deng(邓志姣), Chun-Wang Wu(吴春旺), and Qing-Xia Meng(孟庆霞). Chin. Phys. B, 2021, 30(11): 110311.
[14] Optical nonreciprocity in a piezo-optomechanical system
Yu-Ming Xiao(肖玉铭), Jun-Hao Liu(刘军浩), Qin Wu(吴琴), Ya-Fei Yu(於亚飞), Zhi-Ming Zhang(张智明). Chin. Phys. B, 2020, 29(7): 074204.
[15] Optical enhanced interferometry with two-mode squeezed twin-Fock states and parity detection
Li-Li Hou(侯丽丽), Shuai Wang(王帅), Xue-Fen Xu(许雪芬). Chin. Phys. B, 2020, 29(3): 034203.
No Suggested Reading articles found!