ELECTROMAGNETISM, OPTICS, ACOUSTICS, HEAT TRANSFER, CLASSICAL MECHANICS, AND FLUID DYNAMICS |
Prev
Next
|
|
|
Double-passage mechanical cooling in a coupled optomechanical system |
Qing-Xia Mu(穆青霞)1, Chao Lang(郎潮)1, Wen-Zhao Zhang(张闻钊)2 |
1 Mathematics and Physics Department, North China Electric Power University, Beijing 102206, China; 2 Beijing Computational Science Research Center(CSRC), Beijing 100193, China |
|
|
Abstract We consider a three-mode optomechanical system where two cavity modes are coupled to a common mechanical oscillator. We focus on the resolved sideband limit and illustrate the relation between the significant parameters of the system and the instantaneous-state mean phonon number of the oscillator cooled to the ground state, particularly at the early stage of the evolution. It is worth noting that the optical coupling sets up a correlation between the two cavity modes, which has significant effect on the cooling process. Using numerical solutions, we find that the inter-cavity coupling will decrease the cooling effect when both cavities have the same effective optomechanical coupling. However, when the effective optomechanical couplings are different, the cooling effect will be strongly improved by selecting appropriate range of inter-cavity coupling.
|
Received: 12 June 2019
Revised: 31 July 2019
Accepted manuscript online:
|
PACS:
|
42.50.-p
|
(Quantum optics)
|
|
07.10.Cm
|
(Micromechanical devices and systems)
|
|
42.50.Wk
|
(Mechanical effects of light on material media, microstructures and particles)
|
|
Fund: Project supported by the Fundamental Research Funds for the Central Universities, China (Grant No. 2018MS056) and the National Natural Science Foundation of China (Grant Nos. 11605055 and 11574082). |
Corresponding Authors:
Wen-Zhao Zhang
E-mail: zhangwz@csrc.ac.cn
|
Cite this article:
Qing-Xia Mu(穆青霞), Chao Lang(郎潮), Wen-Zhao Zhang(张闻钊) Double-passage mechanical cooling in a coupled optomechanical system 2019 Chin. Phys. B 28 114206
|
[36] |
Li G, Xiao X, Li Y and Wang X 2018 Phys. Rev. A 97 023801
|
[1] |
Vitali D, Gigan S, Ferreira A, Böhm H R, Tombesi P, Guerreiro A, Vedral V, Zeilinger A and Aspelmeyer M 2007 Phys. Rev. Lett. 98 030405
|
[37] |
Oh S, Shim Y P, Fei J, Friesen M and Hu X 2013 Phys. Rev. A 87 022332
|
[2] |
Wang Y D and Clerk A A 2013 Phys. Rev. Lett. 110 253601
|
[38] |
Oh S, Hu X, Nori F and Kais S 2016 Sci. Rep. 6 20824
|
[3] |
Aspelmeyer M, Kippenberg T J and Marquardt F 2014 Rev. Mod. Phys. 86 1391
|
[39] |
Zheng C, Jiang X, Hua S, Chang L, Li G, Fan H and Xiao M 2012 Opt. Express 20 18319
|
[4] |
Liu Y C, Hu Y W, Wong C W, Xiao Y F 2013 Chin. Phys. B 22 114213
|
[40] |
Sato Y, Tanaka Y, Upham J, Takahashi Y, Asano T and Noda S 2012 Nat. Photon. 6 56
|
[5] |
Regal C A, Teufel J D and Lehnert K W 2008 Nat. Phys. 4 555
|
[41] |
Li B B, Xiao Y F, Zou C L, Jiang X F, Liu Y C, Sun F W and Li Y 2012 Appl. Phys. Lett. 100 021108
|
[6] |
Zhang J Q, Li Y, Feng M and Xu Y 2012 Phys. Rev. A 86 053806
|
[42] |
He B, Yang L and Xiao M 2016 Phys. Rev. A 94 031802
|
[7] |
Mancini S, Giovannetti V, Vitali D and Tombesi P 2002 Phys. Rev. Lett. 88 120401
|
[43] |
Sch ö nleber D W, Eisfeld A and El-Ganainy R 2016 New J. Phys. 18 045014
|
[8] |
Bokje, Nunnenkamp A and Girvin S M 2011 Phys. Rev. Lett. 107 123601
|
[44] |
Walls D F and Milburn G J 1994 Quantum Optics (Berlin:Springer)
|
[9] |
Gall, C, Sangouard N, Piro N, Gisin N and Kippenberg T J 2014 Phys. Rev. Lett. 112 143602
|
[45] |
Gardiner C W and Zoller P 2000 Quantum Noise (Berlin:Springer)
|
[10] |
Triana J F, Estrada A F and Pachón L A 2016 Phys. Rev. Lett. 116 183602
|
[11] |
Sarma B and Sarma A K 2016 Phys. Rev. A 93 033845
|
[12] |
Tetard L, Passian A, Venmar K T, Lynch R M, Voy B H, Shekhawat G, Dravid V P and Thundat T 2008 Nat. Nanotechnol. 3 501-505
|
[13] |
LaHaye, M D, Buu O, Camarota B and Schwab K C 2004 Science 304 74
|
[14] |
B P Abbott et al 2016 Phys. Rev. Lett. 116 061102
|
[15] |
Wilson-Rae I, Nooshi N, Zwerger W and Kippenberg T J 2007 Phys. Rev. Lett. 99 093901
|
[16] |
Li Y, Wu L A and Wang Z D 2011 Phys. Rev. A 83 043804
|
[17] |
Karuza M, Molinelli C, Galassi M, Biancofiore C, Natali R, Tombesi P, Di Giuseppe G and Vitali D 2012 New J. Phys. 14 095015
|
[18] |
Corbitt T, Wipf C, Bodiya T, Ottaway D, Sigg D, Smith N, Whitcomb S and Mavalvala N 2007 Phys. Rev. Lett. 99 160801
|
[19] |
Poggio M, Degen C L, Mamin H J and Rugar D 2007 Phys. Rev. Lett. 99 017201
|
[20] |
Elste F, Girvin S M and Clerk A A 2009 Phys. Rev. Lett. 102 207209
|
[21] |
Teufel J D, Donner T, Li D, Harlow J W, Allman M S, Cicak K, Sirois A J, Whittaker J D, Lehnert K W and Simmonds R W 2011 Nature 475 359
|
[22] |
Chan J, Mayer Alegre T P, Safavi-Naeini A H, Hill J T, Krause A, Gröblacher S, Aspelmeyer M and Painter O 2011 Nature 478 89
|
[23] |
Ritsch H, Domokos P, Brennecke F and Esslinger T 2013 Rev. Mod. Phys. 85 553
|
[24] |
Liu Y L and Liu Y X 2017 Phys. Rev. A 96 023812
|
[25] |
Liu Y C, Xiao Y F, Luan X and Wong C W 2013 Phys. Rev. Lett. 110 153606
|
[26] |
Xu M, Jäger S B, Schütz, Cooper J, Morigi G, Holl and M J 2016 Phys. Rev. Lett. 116 153002
|
[27] |
Zhang W Z, Cheng J, Li W D and Zhou L 2016 Phys. Rev. A 93 063853
|
[28] |
Lai D G, Zou F, Hou B P, Xiao Y F and Liao J Q 2018 Phys. Rev. A 98 023860
|
[29] |
Ockeloen-Korppi C F, Gely M F, Damskägg E, Jenkins M, Steele G A and Sillanpää M A 2019 Phys. Rev. A 99 023826
|
[30] |
Wang M, Lu X Y, Wang Y D, You J Q and Wu Y 2016 Phys. Rev. A 94 053807
|
[31] |
Guo Y, Li K, Nie W and Li Y 2014 Phys. Rev. A 90 053841
|
[32] |
Liu Y C, Xiao Y F, Luan X, Gong Q and Wong C W 2015 Phys. Rev. A 91 033818
|
[33] |
Zheng L L, Yin T S, Bin Q, Lü X Y and Wu Y 2019 Phys. Rev. A 99 013804
|
[34] |
Yan J K, Zhu X F and Chen B 2018 Chin. Phys. B 27 074214
|
[35] |
Karuza M, Molinelli C, Galassi M, Biancofiore C, Natali R, Tombesi P, Di G and Vitali D 2012 New J. Phys. 14 095015
|
[36] |
Li G, Xiao X, Li Y and Wang X 2018 Phys. Rev. A 97 023801
|
[37] |
Oh S, Shim Y P, Fei J, Friesen M and Hu X 2013 Phys. Rev. A 87 022332
|
[38] |
Oh S, Hu X, Nori F and Kais S 2016 Sci. Rep. 6 20824
|
[39] |
Zheng C, Jiang X, Hua S, Chang L, Li G, Fan H and Xiao M 2012 Opt. Express 20 18319
|
[40] |
Sato Y, Tanaka Y, Upham J, Takahashi Y, Asano T and Noda S 2012 Nat. Photon. 6 56
|
[41] |
Li B B, Xiao Y F, Zou C L, Jiang X F, Liu Y C, Sun F W and Li Y 2012 Appl. Phys. Lett. 100 021108
|
[42] |
He B, Yang L and Xiao M 2016 Phys. Rev. A 94 031802
|
[43] |
Sch ö nleber D W, Eisfeld A and El-Ganainy R 2016 New J. Phys. 18 045014
|
[44] |
Walls D F and Milburn G J 1994 Quantum Optics (Berlin:Springer)
|
[45] |
Gardiner C W and Zoller P 2000 Quantum Noise (Berlin:Springer)
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|