CONDENSED MATTER: STRUCTURAL, MECHANICAL, AND THERMAL PROPERTIES |
Prev
Next
|
|
|
Vibrational modes in La2Zr2O7 pyrochlore irradiated with disparate electrical energy losses |
Sheng-Xia Zhang(张胜霞)1, Jie Liu(刘杰)1, Hua Xie(谢华)2, Li-Jun Xu(徐丽君)1,3, Pei-Pei Hu(胡培培)3, Jian Zeng(曾健)1, Zong-Zhen Li(李宗臻)1,3, Li Liu(刘丽)1,3, Wen-Si Ai(艾文思)1,3, Peng-Fei Zhai(翟鹏飞)1 |
1 Institute of Modern Physics, Chinese Academy of Sciences(CAS), Lanzhou 730000, China; 2 Fundamental Science on Nuclear Wastes and Environmental Safety Laboratory, Southwest University of Science and Technology, Mianyang 621010, China; 3 University of Chinese Academy of Sciences, Beijing 100049, China |
|
|
Abstract Polycrystalline samples of La2Zr2O7 pyrochlore are irradiated by different energetic heavy ions to investigate the dependence of the vibrational mode variations on the irradiation parameters. The applied electronic energy loss (dE/dx)e increases from about 5.2 keV/nm to 39.6 keV/nm. The ion fluence ranges from 1×1011 ions/cm2 to 6×1015 ions/cm2. Vibrational modes of irradiated pyrochlore are analyzed by using Raman spectrum. Infrared active modes F1u at 192, 308, and 651 cm-1 appear in Raman spectra, and the F2g band at 265 cm-1 rises up due to the irradiation by 200-MeV Kr ions with (dE/dx)e of 16.0 keV/nm. Differently, for the pyrochlore irradiated by 1750-MeV Bi ions with (dE/dx)e of 39.6 keV/nm, in spite of the appearance of infrared active mode F1u 651 cm-1, the amorphous structure occurs according to the vibrational mode variations of pyrochlore irradiated at higher ion fluences. Amorphous tracks are observed in the samples, which confirm the occurrence of pyrochlore-amorphous transition in pyrochlore irradiated with (dE/dx)e of 39.6 keV/nm.
|
Received: 23 July 2019
Revised: 10 September 2019
Accepted manuscript online:
|
PACS:
|
61.80.-x
|
(Physical radiation effects, radiation damage)
|
|
61.82.-d
|
(Radiation effects on specific materials)
|
|
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 11705246, 11675233, and 11690041) and the Natural Science Foundation of Gansu Province, China (Grant No. 17JR5RA316). |
Corresponding Authors:
Sheng-Xia Zhang, Jie Liu
E-mail: zhangsx@impcas.ac.cn;j.liu@impcas.ac.cn
|
Cite this article:
Sheng-Xia Zhang(张胜霞), Jie Liu(刘杰), Hua Xie(谢华), Li-Jun Xu(徐丽君), Pei-Pei Hu(胡培培), Jian Zeng(曾健), Zong-Zhen Li(李宗臻), Li Liu(刘丽), Wen-Si Ai(艾文思), Peng-Fei Zhai(翟鹏飞) Vibrational modes in La2Zr2O7 pyrochlore irradiated with disparate electrical energy losses 2019 Chin. Phys. B 28 116102
|
[35] |
Long D A 1977 Raman Spectroscopy (New York:McGraw-Hill International Book) p. 65
|
[1] |
Pirzada M, Grimes R W, Minervini L, Maguire J F and Sickafus K E 2001 Solid State Ionics 140 201
|
[36] |
Arenas D J, Gasparov L V, Qiu W, Nino J C, Patterson Charles H and Tanner D B 2010 Phys. Rev. B 82 214302
|
[2] |
Singh D K and Lee Y S 2012 Phys. Rev. Lett. 109 247201
|
[37] |
Zhang J, Lang M, Lian J, Liu J, Trautmann C, Della-Negra S, Toulemonde M and Ewing R C 2009 J. Appl. Phys. 105 113510
|
[3] |
Pasciak M, Wolcyrz M, Pietraszko A and Leoni S 2010 Phys. Rev. B 81 014107
|
[38] |
Shambin J, Tracy C L, Ewing R C, Zhang F X, Li W X, Trautmann C and Lang M 2016 Acta Mater. 117 207
|
[4] |
Uno M, Kosuga A, Okui M, Horisaka K and Yamanaka S 2006 J. Alloys Compd. 420 291
|
[39] |
Sattonnay G, Grygiel C, Monnet I, Legros C, Herbst-Ghysel M and Thomé L 2012 Acta Mater. 60 22
|
[5] |
Zhang A, Lü M, Zhou G, Wang S and Zhou Y 2006 J. Phys. Chem. Solids 67 2430
|
[6] |
Subramanian M A, Aravamudan G and Subba Rao G V 1983 Prog. Solid St. Chem. 15 55
|
[7] |
Chakoumakos B C 1984 J. Solid State Chem. 53 120
|
[8] |
Aidhy D S, Sachan R, Zarkadoula E, Pakarinen O, Chisholm M F, Zhang Y W and Weber W J 2015 Sci. Rep. 5 16297
|
[9] |
Du Y F, Cui L J, Li J S, Li R R and Wan F R 2018 Acta Phys. Sin. 67 216101(in Chinese)
|
[10] |
Hao Z H, Wang H Y, Zhang Q and Mo Z Q 2018 Acta Phys. Sin. 67 247502(in Chinese)
|
[11] |
Wang K, Qi Q, Cheng G J and Shi L Q 2014 Chin. Phys. Lett. 31 072801
|
[12] |
Lian J, Wang L M, Wang S X, Chen J, Boatner L A and Ewing R C 2001 Phys. Rev. Lett. 87 145901
|
[13] |
Begg B D, Hess N J, McCready D E, Thevuthasan S and Weber W J 2001 J. Nucl. Mater. 289 188
|
[14] |
Lian J, Zu X T, Kutty K V G, Chen J, Wang L M and Ewing R C 2002 Phys. Rev. B 66 054108
|
[15] |
Lian J, Wang L, Chen J, Sun K, Ewing R C, Farmer J M and Boatner L A 2003 Acta Mater. 51 1493
|
[16] |
Sickafus K E, Minervini L, Grimes R W, Valdez J A, Ishimaru M, Li F, McClellan K J and Hartmann T 2000 Science 289 748
|
[17] |
Zhang J M, Lang M, Ewing R C, Devanathan R, Weber W J and Toulemonde M 2010 J. Mater. Res. 25 1344
|
[18] |
Zhang J W, Lang M, Ewing R C and Becker U 2013 J. Phys.:Condens. Matter. 25 135001
|
[19] |
Lang M, Lian J, Zhang J M, Zhang F X, Weber W J, Trautmann C, Neumanna R and Ewing R C 2009 Phys. Rev. B 79 224105
|
[20] |
Patel M K, Vijayakumar V, Avasthi D K, Kailas S, Pivin J C, Grover V, Mandal B P and Tyagi A K 2008 Nucl. Instrum. Methods Phys. Res. Sect. B 266 2898
|
[21] |
Zhang F X, Lian J, Becker U, Ewing R C, Wang L M, Hu J Z and Saxena S K 2007 J. Solid State Chem. 180 571
|
[22] |
Park S, Lang M, Tracy C L, Zhang J M, Zhang F X, Trautmann C, Rodriguez M D, Kluth P and Ewing R C 2015 Acta Mater. 93 1
|
[23] |
Sickafus K E, Grimes R W, Valdez J A, Cleave A, Tang M, Ishimaru M, Corish S M, Stanek C R and Uberuaga B P 2007 Nat. Mater. 6 217
|
[24] |
Charties A, Meis C, Weber W J and Corrales L R 2002 Phys. Rev. B 65 134116
|
[25] |
Sattonnay G, Moll S, Desbrosses V, Menvie Bekale V, Legros C, Thomé L and Monnet I 2010 Nucl. Instrum. Methods Phys. Res. Sect. B 268 3040
|
[26] |
Sattonnay G, Moll S, Herbst-Ghysel M, Legros C, Costantini J M and Thomé L 2008 Nucl. Instrum. Methods Phys. Res. Sect. B 266 3052
|
[27] |
Sellami N, Sattonnay G, Grygiel C, Monnet I, Debelle A, Legros C, Menut D, Miro S, Simon P, Bechade J L and Thomé L 2015 Nucl. Instrum. Methods Phys. Res. Sect. B 365 371
|
[28] |
Ziegler J F, Ziegler M D and Biersack J P 2010 Nucl. Instrum. Methods Phys. Res. Sect. B 268 11
|
[29] |
Kong L, Karatchevtseva I, Gregg D J, Blackford M G, Holmes R and Triani G 2013 J. Am. Ceram. Soc. 96 935
|
[30] |
Michel D, Jorba M P Y and Collongues R 1976 J. Raman Spectrosc. 5 163
|
[31] |
Scheetz B E and White W B 1979 J. Am. Ceram. Soc. 62 468
|
[32] |
Vandenborre M T and Husson E 1983 J. Solid State Chem. 50 362
|
[33] |
Mandal B P, Krishna P S R and Tyagi A K 2010 J. Solid State Chem. 183 41
|
[34] |
Nandi S, Jana Y M and Gupta H C 2018 J. Phys. Chem. Solids 115 347
|
[35] |
Long D A 1977 Raman Spectroscopy (New York:McGraw-Hill International Book) p. 65
|
[36] |
Arenas D J, Gasparov L V, Qiu W, Nino J C, Patterson Charles H and Tanner D B 2010 Phys. Rev. B 82 214302
|
[37] |
Zhang J, Lang M, Lian J, Liu J, Trautmann C, Della-Negra S, Toulemonde M and Ewing R C 2009 J. Appl. Phys. 105 113510
|
[38] |
Shambin J, Tracy C L, Ewing R C, Zhang F X, Li W X, Trautmann C and Lang M 2016 Acta Mater. 117 207
|
[39] |
Sattonnay G, Grygiel C, Monnet I, Legros C, Herbst-Ghysel M and Thomé L 2012 Acta Mater. 60 22
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|