Please wait a minute...
Chin. Phys. B, 2019, Vol. 28(11): 116102    DOI: 10.1088/1674-1056/ab43bf
CONDENSED MATTER: STRUCTURAL, MECHANICAL, AND THERMAL PROPERTIES Prev   Next  

Vibrational modes in La2Zr2O7 pyrochlore irradiated with disparate electrical energy losses

Sheng-Xia Zhang(张胜霞)1, Jie Liu(刘杰)1, Hua Xie(谢华)2, Li-Jun Xu(徐丽君)1,3, Pei-Pei Hu(胡培培)3, Jian Zeng(曾健)1, Zong-Zhen Li(李宗臻)1,3, Li Liu(刘丽)1,3, Wen-Si Ai(艾文思)1,3, Peng-Fei Zhai(翟鹏飞)1
1 Institute of Modern Physics, Chinese Academy of Sciences(CAS), Lanzhou 730000, China;
2 Fundamental Science on Nuclear Wastes and Environmental Safety Laboratory, Southwest University of Science and Technology, Mianyang 621010, China;
3 University of Chinese Academy of Sciences, Beijing 100049, China
Abstract  Polycrystalline samples of La2Zr2O7 pyrochlore are irradiated by different energetic heavy ions to investigate the dependence of the vibrational mode variations on the irradiation parameters. The applied electronic energy loss (dE/dx)e increases from about 5.2 keV/nm to 39.6 keV/nm. The ion fluence ranges from 1×1011 ions/cm2 to 6×1015 ions/cm2. Vibrational modes of irradiated pyrochlore are analyzed by using Raman spectrum. Infrared active modes F1u at 192, 308, and 651 cm-1 appear in Raman spectra, and the F2g band at 265 cm-1 rises up due to the irradiation by 200-MeV Kr ions with (dE/dx)e of 16.0 keV/nm. Differently, for the pyrochlore irradiated by 1750-MeV Bi ions with (dE/dx)e of 39.6 keV/nm, in spite of the appearance of infrared active mode F1u 651 cm-1, the amorphous structure occurs according to the vibrational mode variations of pyrochlore irradiated at higher ion fluences. Amorphous tracks are observed in the samples, which confirm the occurrence of pyrochlore-amorphous transition in pyrochlore irradiated with (dE/dx)e of 39.6 keV/nm.
Keywords:  pyrochlore      heavy ion irradiation      vibrational spectra      phase transition  
Received:  23 July 2019      Revised:  10 September 2019      Accepted manuscript online: 
PACS:  61.80.-x (Physical radiation effects, radiation damage)  
  61.82.-d (Radiation effects on specific materials)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 11705246, 11675233, and 11690041) and the Natural Science Foundation of Gansu Province, China (Grant No. 17JR5RA316).
Corresponding Authors:  Sheng-Xia Zhang, Jie Liu     E-mail:  zhangsx@impcas.ac.cn;j.liu@impcas.ac.cn

Cite this article: 

Sheng-Xia Zhang(张胜霞), Jie Liu(刘杰), Hua Xie(谢华), Li-Jun Xu(徐丽君), Pei-Pei Hu(胡培培), Jian Zeng(曾健), Zong-Zhen Li(李宗臻), Li Liu(刘丽), Wen-Si Ai(艾文思), Peng-Fei Zhai(翟鹏飞) Vibrational modes in La2Zr2O7 pyrochlore irradiated with disparate electrical energy losses 2019 Chin. Phys. B 28 116102

[35] Long D A 1977 Raman Spectroscopy (New York:McGraw-Hill International Book) p. 65
[1] Pirzada M, Grimes R W, Minervini L, Maguire J F and Sickafus K E 2001 Solid State Ionics 140 201
[36] Arenas D J, Gasparov L V, Qiu W, Nino J C, Patterson Charles H and Tanner D B 2010 Phys. Rev. B 82 214302
[2] Singh D K and Lee Y S 2012 Phys. Rev. Lett. 109 247201
[37] Zhang J, Lang M, Lian J, Liu J, Trautmann C, Della-Negra S, Toulemonde M and Ewing R C 2009 J. Appl. Phys. 105 113510
[3] Pasciak M, Wolcyrz M, Pietraszko A and Leoni S 2010 Phys. Rev. B 81 014107
[38] Shambin J, Tracy C L, Ewing R C, Zhang F X, Li W X, Trautmann C and Lang M 2016 Acta Mater. 117 207
[4] Uno M, Kosuga A, Okui M, Horisaka K and Yamanaka S 2006 J. Alloys Compd. 420 291
[39] Sattonnay G, Grygiel C, Monnet I, Legros C, Herbst-Ghysel M and Thomé L 2012 Acta Mater. 60 22
[5] Zhang A, Lü M, Zhou G, Wang S and Zhou Y 2006 J. Phys. Chem. Solids 67 2430
[6] Subramanian M A, Aravamudan G and Subba Rao G V 1983 Prog. Solid St. Chem. 15 55
[7] Chakoumakos B C 1984 J. Solid State Chem. 53 120
[8] Aidhy D S, Sachan R, Zarkadoula E, Pakarinen O, Chisholm M F, Zhang Y W and Weber W J 2015 Sci. Rep. 5 16297
[9] Du Y F, Cui L J, Li J S, Li R R and Wan F R 2018 Acta Phys. Sin. 67 216101(in Chinese)
[10] Hao Z H, Wang H Y, Zhang Q and Mo Z Q 2018 Acta Phys. Sin. 67 247502(in Chinese)
[11] Wang K, Qi Q, Cheng G J and Shi L Q 2014 Chin. Phys. Lett. 31 072801
[12] Lian J, Wang L M, Wang S X, Chen J, Boatner L A and Ewing R C 2001 Phys. Rev. Lett. 87 145901
[13] Begg B D, Hess N J, McCready D E, Thevuthasan S and Weber W J 2001 J. Nucl. Mater. 289 188
[14] Lian J, Zu X T, Kutty K V G, Chen J, Wang L M and Ewing R C 2002 Phys. Rev. B 66 054108
[15] Lian J, Wang L, Chen J, Sun K, Ewing R C, Farmer J M and Boatner L A 2003 Acta Mater. 51 1493
[16] Sickafus K E, Minervini L, Grimes R W, Valdez J A, Ishimaru M, Li F, McClellan K J and Hartmann T 2000 Science 289 748
[17] Zhang J M, Lang M, Ewing R C, Devanathan R, Weber W J and Toulemonde M 2010 J. Mater. Res. 25 1344
[18] Zhang J W, Lang M, Ewing R C and Becker U 2013 J. Phys.:Condens. Matter. 25 135001
[19] Lang M, Lian J, Zhang J M, Zhang F X, Weber W J, Trautmann C, Neumanna R and Ewing R C 2009 Phys. Rev. B 79 224105
[20] Patel M K, Vijayakumar V, Avasthi D K, Kailas S, Pivin J C, Grover V, Mandal B P and Tyagi A K 2008 Nucl. Instrum. Methods Phys. Res. Sect. B 266 2898
[21] Zhang F X, Lian J, Becker U, Ewing R C, Wang L M, Hu J Z and Saxena S K 2007 J. Solid State Chem. 180 571
[22] Park S, Lang M, Tracy C L, Zhang J M, Zhang F X, Trautmann C, Rodriguez M D, Kluth P and Ewing R C 2015 Acta Mater. 93 1
[23] Sickafus K E, Grimes R W, Valdez J A, Cleave A, Tang M, Ishimaru M, Corish S M, Stanek C R and Uberuaga B P 2007 Nat. Mater. 6 217
[24] Charties A, Meis C, Weber W J and Corrales L R 2002 Phys. Rev. B 65 134116
[25] Sattonnay G, Moll S, Desbrosses V, Menvie Bekale V, Legros C, Thomé L and Monnet I 2010 Nucl. Instrum. Methods Phys. Res. Sect. B 268 3040
[26] Sattonnay G, Moll S, Herbst-Ghysel M, Legros C, Costantini J M and Thomé L 2008 Nucl. Instrum. Methods Phys. Res. Sect. B 266 3052
[27] Sellami N, Sattonnay G, Grygiel C, Monnet I, Debelle A, Legros C, Menut D, Miro S, Simon P, Bechade J L and Thomé L 2015 Nucl. Instrum. Methods Phys. Res. Sect. B 365 371
[28] Ziegler J F, Ziegler M D and Biersack J P 2010 Nucl. Instrum. Methods Phys. Res. Sect. B 268 11
[29] Kong L, Karatchevtseva I, Gregg D J, Blackford M G, Holmes R and Triani G 2013 J. Am. Ceram. Soc. 96 935
[30] Michel D, Jorba M P Y and Collongues R 1976 J. Raman Spectrosc. 5 163
[31] Scheetz B E and White W B 1979 J. Am. Ceram. Soc. 62 468
[32] Vandenborre M T and Husson E 1983 J. Solid State Chem. 50 362
[33] Mandal B P, Krishna P S R and Tyagi A K 2010 J. Solid State Chem. 183 41
[34] Nandi S, Jana Y M and Gupta H C 2018 J. Phys. Chem. Solids 115 347
[35] Long D A 1977 Raman Spectroscopy (New York:McGraw-Hill International Book) p. 65
[36] Arenas D J, Gasparov L V, Qiu W, Nino J C, Patterson Charles H and Tanner D B 2010 Phys. Rev. B 82 214302
[37] Zhang J, Lang M, Lian J, Liu J, Trautmann C, Della-Negra S, Toulemonde M and Ewing R C 2009 J. Appl. Phys. 105 113510
[38] Shambin J, Tracy C L, Ewing R C, Zhang F X, Li W X, Trautmann C and Lang M 2016 Acta Mater. 117 207
[39] Sattonnay G, Grygiel C, Monnet I, Legros C, Herbst-Ghysel M and Thomé L 2012 Acta Mater. 60 22
[1] Tailoring of thermal expansion and phase transition temperature of ZrW2O8 with phosphorus and enhancement of negative thermal expansion of ZrW1.5P0.5O7.75
Chenjun Zhang(张晨骏), Xiaoke He(何小可), Zhiyu Min(闵志宇), and Baozhong Li(李保忠). Chin. Phys. B, 2023, 32(4): 048201.
[2] Topological phase transition in network spreading
Fuzhong Nian(年福忠) and Xia Zhang(张霞). Chin. Phys. B, 2023, 32(3): 038901.
[3] Liquid-liquid phase transition in confined liquid titanium
Di Zhang(张迪), Yunrui Duan(段云瑞), Peiru Zheng(郑培儒), Yingjie Ma(马英杰), Junping Qian(钱俊平), Zhichao Li(李志超), Jian Huang(黄建), Yanyan Jiang(蒋妍彦), and Hui Li(李辉). Chin. Phys. B, 2023, 32(2): 026801.
[4] Prediction of flexoelectricity in BaTiO3 using molecular dynamics simulations
Long Zhou(周龙), Xu-Long Zhang(张旭龙), Yu-Ying Cao(曹玉莹), Fu Zheng(郑富), Hua Gao(高华), Hong-Fei Liu(刘红飞), and Zhi Ma(马治). Chin. Phys. B, 2023, 32(1): 017701.
[5] Magnetocaloric properties and Griffiths phase of ferrimagnetic cobaltite CaBaCo4O7
Tina Raoufi, Jincheng He(何金城), Binbin Wang(王彬彬), Enke Liu(刘恩克), and Young Sun(孙阳). Chin. Phys. B, 2023, 32(1): 017504.
[6] Configurational entropy-induced phase transition in spinel LiMn2O4
Wei Hu(胡伟), Wen-Wei Luo(罗文崴), Mu-Sheng Wu(吴木生), Bo Xu(徐波), and Chu-Ying Ouyang(欧阳楚英). Chin. Phys. B, 2022, 31(9): 098202.
[7] Effect of f-c hybridization on the $\gamma\to \alpha$ phase transition of cerium studied by lanthanum doping
Yong-Huan Wang(王永欢), Yun Zhang(张云), Yu Liu(刘瑜), Xiao Tan(谈笑), Ce Ma(马策), Yue-Chao Wang(王越超), Qiang Zhang(张强), Deng-Peng Yuan(袁登鹏), Dan Jian(简单), Jian Wu(吴健), Chao Lai(赖超), Xi-Yang Wang(王西洋), Xue-Bing Luo(罗学兵), Qiu-Yun Chen(陈秋云), Wei Feng(冯卫), Qin Liu(刘琴), Qun-Qing Hao(郝群庆), Yi Liu(刘毅), Shi-Yong Tan(谭世勇), Xie-Gang Zhu(朱燮刚), Hai-Feng Song(宋海峰), and Xin-Chun Lai(赖新春). Chin. Phys. B, 2022, 31(8): 087102.
[8] Characterization of topological phase of superlattices in superconducting circuits
Jianfei Chen(陈健菲), Chaohua Wu(吴超华), Jingtao Fan(樊景涛), and Gang Chen(陈刚). Chin. Phys. B, 2022, 31(8): 088501.
[9] Hard-core Hall tube in superconducting circuits
Xin Guan(关欣), Gang Chen(陈刚), Jing Pan(潘婧), and Zhi-Guo Gui(桂志国). Chin. Phys. B, 2022, 31(8): 080302.
[10] Exchange-coupling-induced fourfold magnetic anisotropy in CoFeB/FeRh bilayer grown on SrTiO3(001)
Qingrong Shao(邵倾蓉), Jing Meng(孟婧), Xiaoyan Zhu(朱晓艳), Yali Xie(谢亚丽), Wenjuan Cheng(程文娟), Dongmei Jiang(蒋冬梅), Yang Xu(徐杨), Tian Shang(商恬), and Qingfeng Zhan(詹清峰). Chin. Phys. B, 2022, 31(8): 087503.
[11] Topological phase transition in cavity optomechanical system with periodical modulation
Zhi-Xu Zhang(张志旭), Lu Qi(祁鲁), Wen-Xue Cui(崔文学), Shou Zhang(张寿), and Hong-Fu Wang(王洪福). Chin. Phys. B, 2022, 31(7): 070301.
[12] Structural evolution and bandgap modulation of layered β-GeSe2 single crystal under high pressure
Hengli Xie(谢恒立), Jiaxiang Wang(王家祥), Lingrui Wang(王玲瑞), Yong Yan(闫勇), Juan Guo(郭娟), Qilong Gao(高其龙), Mingju Chao(晁明举), Erjun Liang(梁二军), and Xiao Ren(任霄). Chin. Phys. B, 2022, 31(7): 076101.
[13] Structural evolution and molecular dissociation of H2S under high pressures
Wen-Ji Shen(沈文吉), Tian-Xiao Liang(梁天笑), Zhao Liu(刘召), Xin Wang(王鑫), De-Fang Duan(段德芳), Hong-Yu Yu(于洪雨), and Tian Cui(崔田). Chin. Phys. B, 2022, 31(7): 076102.
[14] Universal order-parameter and quantum phase transition for two-dimensional q-state quantum Potts model
Yan-Wei Dai(代艳伟), Sheng-Hao Li(李生好), and Xi-Hao Chen(陈西浩). Chin. Phys. B, 2022, 31(7): 070502.
[15] Dynamical quantum phase transition in XY chains with the Dzyaloshinskii-Moriya and XZY-YZX three-site interactions
Kaiyuan Cao(曹凯源), Ming Zhong(钟鸣), and Peiqing Tong(童培庆). Chin. Phys. B, 2022, 31(6): 060505.
No Suggested Reading articles found!