Please wait a minute...
Chin. Phys. B, 2019, Vol. 28(10): 104206    DOI: 10.1088/1674-1056/ab3f24
ELECTROMAGNETISM, OPTICS, ACOUSTICS, HEAT TRANSFER, CLASSICAL MECHANICS, AND FLUID DYNAMICS Prev   Next  

Polymer/silica hybrid waveguide Y-branch power splitter with loss compensation based on NaYF4: Er3+, Yb3+ nanocrystals

Yue-Wu Fu(符越吾)1, Tong-He Sun(孙潼鹤)1, Mei-Ling Zhang(张美玲)2, Xu-Cheng Zhang(张绪成)1, Fei Wang(王菲)1, Da-Ming Zhang(张大明)1
1 State Key Laboratory of Integrated Optoelectronics, College of Electronic Science and Engineering, Jilin University, Changchun 130012, China;
2 College of Communication Engineering, Jilin University, Changchun 130012, China
Abstract  

A polymer waveguide Y-branch power splitter with loss compensation is proposed based on NaYF4:Er3+, Yb3+ nanocrystals prepared by a high temperature thermal decomposition method. The Y-branch power splitter is designed as a structure of embedded waveguide, and its core material is nanocrystals-doped SU-8. The insertion loss of the device is~15 dB. For an input signal power of 0.05 mW and a pump power of 267.7 mW, the two branches with 5.81-dB and 5.41-dB loss compensations at 1530 nm are achieved respectively. A polymer waveguide Y-branch power splitter with loss compensation has an important research significance.

Keywords:  polymer      NaYF4:Er      Yb      loss compensation  
Received:  13 May 2019      Revised:  08 July 2019      Accepted manuscript online: 
PACS:  42.70.Jk (Polymers and organics)  
  42.82.-m (Integrated optics)  
  42.79.Gn (Optical waveguides and couplers)  
  42.60.Da (Resonators, cavities, amplifiers, arrays, and rings)  
Fund: 

Project supported by the Science and Technology Innovation Development Plan of Jilin City, China (Grant No. 201830793) and the Science and Technology Development Plan of Jilin Province, China (Grant No. 20190302010GX).

Corresponding Authors:  Fei Wang     E-mail:  wang_fei@jlu.edu.cn

Cite this article: 

Yue-Wu Fu(符越吾), Tong-He Sun(孙潼鹤), Mei-Ling Zhang(张美玲), Xu-Cheng Zhang(张绪成), Fei Wang(王菲), Da-Ming Zhang(张大明) Polymer/silica hybrid waveguide Y-branch power splitter with loss compensation based on NaYF4: Er3+, Yb3+ nanocrystals 2019 Chin. Phys. B 28 104206

[1] Desurvire E, Simpson J R and Becker P C 1987 Opt. Lett. 12 888
[2] Coppola G, Sirleto L, Rendina I and Iodice M 2011 Opt. Eng. 50 071112
[3] Singh S P and Singh N 2007 Progress in Electromagnetics Research 73 249
[4] Rong H S, Jones R and Liu A S 2005 Nature 433 725
[5] Wrage M, Kirstaedter A and Rohde H 2004 Asia-pacific Optical Communications, December 29, 2004, Beijing, China, 5626 347
[6] Yang Q, Yu B L and Zhen S L 2002 Optoelectronic Technology & Information 15 13
[7] Han L S, Kuo Bill P P and Alic N 2018 Opt. Express 26 14800
[8] Sun X Q, Chen C M and Li X D 2012 Chin. Phys. Lett. 29 014212
[9] Zheng Y, Chen C M and Gu Y L 2015 Opt. Mater. Express 5 1934
[10] Fujisawa T, Yamashita Y and Sakamoto T 2017 Optical Fiber Communication Conference, March 19-23, 2017, Los Angeles, California, USA, P.W1B.1
[11] Liu Y, Sun Y and Yi Y J 2017 Chin. Phys. B 26 124215
[12] Li B J, Wan J J and Li G Z 2000 Thin Solid Films 369 419
[13] Bradley J D B, Stoffer R and Bakker Arjen 2010 IEEE Photon. Technol. Lett. 22 278
[14] Chen J H, Huang Y T and Yang Y L 2012 Appl. Opt. 51 5876
[15] Amjad R J, Sahar M R and Choshal S K 2013 Chin. Phys. Lett. 30 027301
[16] Jin G L, Shao G H and Mu H 2005 Chin. Phys. Lett. 22 2862
[17] Liu A S, Rong H S and Paniccia M 2004 Opt. Express 12 4261
[18] Xing G C, Zhang M L and Sun T H 2018 Chin. Phys. B 27 114218
[19] Qin G S, Yamashita T and Ohishi Y 2007 Quantum Electronics and Laser Science Conference, May 6-11, 2007, Baltimore, Maryland USA, P. JTuA68
[20] Chen C, Zhang D and Li T 2009 Appl. Phys. Lett. 94 041119
[21] Li T, Zhang D and Chen C 2010 J. Nanosci. Nanotechnol. 10 2169
[22] Lei K L, Chow C F and Tsang K C 2010 J. Mater. Chem. 20 7526
[23] Zhao P C, Chen H Q and Zheng C T 2014 Opt. Quantum Electron. 46 1571
[24] Wong W H, Pun E Y B and Chan K S 2004 Appl. Phys. Lett. 84 176
[25] Zhai X S, Liu S S and Liu X Y 2013 J. Mater. Chem. C 1 1525
[26] Yin J, Qu C Y and Zhang M L 2015 Acta Opt. Sin. 35 1213001 (in Chinese)
[1] Tunable phonon-atom interaction in a hybrid optomechanical system
Yao Li(李耀), Chuang Li(李闯), Jiandong Zhang(张建东),Ying Dong(董莹), and Huizhu Hu(胡慧珠). Chin. Phys. B, 2023, 32(4): 044213.
[2] Positon and hybrid solutions for the (2+1)-dimensional complex modified Korteweg-de Vries equations
Feng Yuan(袁丰) and Behzad Ghanbari. Chin. Phys. B, 2023, 32(4): 040201.
[3] Couple stress and Darcy Forchheimer hybrid nanofluid flow on a vertical plate by means of double diffusion Cattaneo-Christov analysis
Hamdi Ayed. Chin. Phys. B, 2023, 32(4): 040205.
[4] Plasmonic hybridization properties in polyenes octatetraene molecules based on theoretical computation
Nan Gao(高楠), Guodong Zhu(朱国栋), Yingzhou Huang(黄映洲), and Yurui Fang(方蔚瑞). Chin. Phys. B, 2023, 32(3): 037102.
[5] Magnetocaloric properties of phenolic resin bonded La(Fe,Si)13-based plates and its use in a hybrid magnetic refrigerator
Shao-Shan Xu(徐少山), Qi Fu(付琪), Yi-Fan Zhou(周益帆), Ling Peng(彭铃), Xin-Qiang Gao(高新强), Zhen-Xing Li(李振兴), Mao-Qiong Gong(公茂琼), Xue-Qiang Dong(董学强), and Jun Shen(沈俊). Chin. Phys. B, 2023, 32(2): 027502.
[6] Parametric decay instabilities of lower hybrid waves on CFETR
Taotao Zhou(周涛涛), Nong Xiang(项农), Chunyun Gan(甘春芸), Guozhang Jia(贾国章), and Jiale Chen(陈佳乐). Chin. Phys. B, 2022, 31(9): 095201.
[7] Temperature and strain sensitivities of surface and hybrid acoustic wave Brillouin scattering in optical microfibers
Yi Liu(刘毅), Yuanqi Gu(顾源琦), Yu Ning(宁钰), Pengfei Chen(陈鹏飞), Yao Yao(姚尧),Yajun You(游亚军), Wenjun He(贺文君), and Xiujian Chou(丑修建). Chin. Phys. B, 2022, 31(9): 094208.
[8] Direct visualization of structural defects in 2D semiconductors
Yutuo Guo(郭玉拓), Qinqin Wang(王琴琴), Xiaomei Li(李晓梅), Zheng Wei(魏争), Lu Li(李璐), Yalin Peng(彭雅琳), Wei Yang(杨威), Rong Yang(杨蓉), Dongxia Shi(时东霞), Xuedong Bai(白雪冬), Luojun Du(杜罗军), and Guangyu Zhang(张广宇). Chin. Phys. B, 2022, 31(7): 076105.
[9] Plasma-wave interaction in helicon plasmas near the lower hybrid frequency
Yide Zhao(赵以德), Jinwei Bai(白进纬), Yong Cao(曹勇), Siyu Wu(吴思宇), Eduardo Ahedo, Mario Merino, and Bin Tian(田滨). Chin. Phys. B, 2022, 31(7): 075203.
[10] Modeling and numerical simulation of electrical and optical characteristics of a quantum dot light-emitting diode based on the hopping mobility model: Influence of quantum dot concentration
Pezhman Sheykholeslami-Nasab, Mahdi Davoudi-Darareh, and Mohammad Hassan Yousefi. Chin. Phys. B, 2022, 31(6): 068504.
[11] Quantum key distribution transmitter chip based on hybrid-integration of silica and lithium niobates
Xiao Li(李骁), Liang-Liang Wang(王亮亮), Jia-shun Zhang(张家顺), Wei Chen(陈巍), Yue Wang(王玥), Dan Wu (吴丹), and Jun-Ming An (安俊明). Chin. Phys. B, 2022, 31(6): 064212.
[12] Molecular dynamics simulations of mechanical properties of epoxy-amine: Cross-linker type and degree of conversion effects
Yongqin Zhang(张永钦), Hua Yang(杨华), Yaguang Sun(孙亚光),Xiangrui Zheng(郑香蕊), and Yafang Guo(郭雅芳). Chin. Phys. B, 2022, 31(6): 064209.
[13] Influences of Marangoni convection and variable magnetic field on hybrid nanofluid thin-film flow past a stretching surface
Noor Wali Khan, Arshad Khan, Muhammad Usman, Taza Gul, Abir Mouldi, and Ameni Brahmia. Chin. Phys. B, 2022, 31(6): 064403.
[14] Structure, phase evolution and properties of Ta films deposited using hybrid high-power pulsed and DC magnetron co-sputtering
Min Huang(黄敏), Yan-Song Liu(刘艳松), Zhi-Bing He(何智兵), and Yong Yi(易勇). Chin. Phys. B, 2022, 31(6): 066101.
[15] Effects of colored noise on the dynamics of quantum entanglement of a one-parameter qubit—qutrit system
Odette Melachio Tiokang, Fridolin Nya Tchangnwa, Jaures Diffo Tchinda,Arthur Tsamouo Tsokeng, and Martin Tchoffo. Chin. Phys. B, 2022, 31(5): 050306.
No Suggested Reading articles found!