Please wait a minute...
Chin. Phys. B, 2019, Vol. 28(10): 104207    DOI: 10.1088/1674-1056/ab3f21
ELECTROMAGNETISM, OPTICS, ACOUSTICS, HEAT TRANSFER, CLASSICAL MECHANICS, AND FLUID DYNAMICS Prev   Next  

Properties of multi-Gaussian Schell-model beams carrying an edge dislocation propagating in oceanic turbulence

Da-Jun Liu(刘大军), Yao-Chuan Wang(王耀川), Gui-Qiu Wang(王桂秋), Hong-Ming Yin(尹鸿鸣), Hai-Yang Zhong(仲海洋)
Department of Physics, College of Science, Dalian Maritime University, Dalian 116026, China
Abstract  Based on the theory of coherence, the model of multi-Gaussian Schell-model (MGSM) beams carrying an edge dislocation generated by the MGSM source is introduced. The analytical cross-spectral density of MGSM beams carrying an edge dislocation propagating in oceanic turbulence is derived, and used to study the evolution properties of the MGSM beams carrying an edge dislocation. The results indicate that the MGSM beam carrying an edge dislocation propagating in oceanic turbulence will evolve from the profile with two intensity peaks into a flat-topped beam caused by the MGSM source, and the beam will evolve into the Gaussian-like beam due to the influences of oceanic turbulence in the far field. As the propagation distance increases, the MGSM beam carrying an edge dislocation propagating in oceanic turbulence with the larger rate of dissipation of mean-squared temperature (χT) and ratio of temperature to salinity contribution to the refractive index spectrum (ε) or the smaller rate of dissipation of kinetic energy per unit mass of fluid (ξ) evolves into the flat-topped beam or a Gaussian beam faster.
Keywords:  oceanic turbulence      multi-Gaussian Schell-model source      edge dislocation      laser propagation      average intensity  
Received:  24 May 2019      Revised:  27 June 2019      Accepted manuscript online: 
PACS:  42.68.Xy (Ocean optics)  
  42.68.Ay (Propagation, transmission, attenuation, and radiative transfer)  
  42.25.Bs (Wave propagation, transmission and absorption)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 11604038, 11875096, and 11404048) and the Fundamental Research Funds for the Central Universities, China (Grant Nos. 3132019182 and 3132019184).
Corresponding Authors:  Da-Jun Liu     E-mail:  liudajun@dlmu.edu.cn

Cite this article: 

Da-Jun Liu(刘大军), Yao-Chuan Wang(王耀川), Gui-Qiu Wang(王桂秋), Hong-Ming Yin(尹鸿鸣), Hai-Yang Zhong(仲海洋) Properties of multi-Gaussian Schell-model beams carrying an edge dislocation propagating in oceanic turbulence 2019 Chin. Phys. B 28 104207

[40] Korotkova O, Sahin S and Shchepakina E 2012 J. Opt. Soc. Am. A 29 2159
[1] Nikishov V V and Nikishov V I 2000 Int. J. Fluid Mech. Res. 27 82
[41] Eyyuboglu H T, Baykal and Sermutlu E 2006 Opt. Commnu. 265 399
[2] Yi X and Djordjevic I B 2018 Opt. Express 26 10188
[3] Baykal Y 2017 Opt. Commun. 390 72
[4] Liu D J and Wang Y C 2017 Optik 144 76
[5] Liu D J, Wang Y C, Wang G Q and Yin H M 2018 Optik 154 738
[6] Yu L and Zhang Y X 2017 Opt. Express 25 22565
[7] Gökçe M C and Baykal Y 2018 Opt. Commun. 410 830
[8] Li Y, Zhang Y X and Zhu Y 2018 Opt. Commun. 428 57
[9] Tang M M and Zhao D M 2013 Appl. Phys. B 111 665
[10] Dong Y M, Guo L N, Liang C H, Wang F and Cai Y J 2015 J. Opt. Soc. Am. A 32 894
[11] Ye F, Zhang J B, Xie J T and Deng D M 2018 Opt. Commun. 426 456
[12] Wang Z Q, Lu L, Zhang P F, Fan C Y and Ji X L 2016 Opt. Commun. 367 95
[13] Lu L, Wang Z Q, Zhang J H, Zhang P F, Qiao C H, Fan C Y and Ji X L 2015 Appl. Opt. 54 7500
[14] Lu L, Ji X L, Li X Q, Deng J P, Chen H and Yang T 2014 Optik 125 7154
[15] Liu D J, Wang Y C, Wang G Q, Yin H M and Wang J R 2016 Opt. Laser Technol. 82 76
[16] Wang F, Liu X L and Cai Y J 2015 Prog Electromagn Res. 150 123
[17] Liu D J, Wang Y C and Yin H M 2015 Appl. Opt. 54 10510
[18] Liu D J, Wang G Q and Wang Y C 2018 Opt. & Laser Technol. 98 309
[19] Liu D J, Yin H M, Wang G Q and Wang Y C 2017 Appl. Opt. 56 8785
[20] Korotkova O and Farwell N 2011 Opt. Commun. 284 1740
[21] Zhou Y, Chen Q and Zhao D M 2014 Appl. Phys. B 114 475
[22] Liu D J, Wang Y C, Luo X X, Wang G Q and Yin H M 2017 J. Mod. Optic 64 1579
[23] Liu D J, Wang Y C, Wang G Q, Luo X X and Yin H M 2017 Laser Phys. 27 016001
[24] Huang Y P, Huang P, Wang F H, Zhao G P and Zeng A P 2015 Opt. Commun. 336 146
[25] Liu D J and Wang Y C 2018 Opt. & Laser Technol. 103 33
[26] Liu D J, Wang Y C and Zhong H Y 2018 Opt. & Laser Technol. 106 495
[27] Yousefi M, Kashani F D and Mashal A 2017 Laser Phys. 27 026202
[28] Huang Y P, Zhang B, Gao Z H, Zhao G P and Duan Z C 2014 Opt. Express 22 17723
[29] Xu J and Zhao D M 2014 Opt. Laser Technol. 57 189
[30] Liu D J, Wang G Q, Yin H M, Zhong H Y and Wang Y C 2019 Opt. Commun. 437 346
[31] Zhu W T, Tang M M and Zhao D M 2016 Optik 127 3775
[32] Zhou Y J and Zhao D M 2018 Appl. Opt. 57 8978
[33] Lu C Y and Zhao D M 2016 Appl. Opt. 55 8196
[34] Liu Y X, Chen Z Y and Pu J X 2017 Acta Phys. Sin. 66 124205 (in Chinese)
[35] Wu T, Ji X L, Li X Q, Wang H, Deng Y and Ding Z L 2018 Acta Phys. Sin. 22 224206 (in Chinese)
[36] Liu D J and Wang Y C 2018 Appl. Phys. B 124 176
[37] Sahin S and Korotkova O 2012 Opt. Lett. 37 2970
[38] Li J H and Lü B D 2011 Opt. Commun. 284 1
[39] Wolf E 2003 Phys. Lett. A 312 263
[40] Korotkova O, Sahin S and Shchepakina E 2012 J. Opt. Soc. Am. A 29 2159
[41] Eyyuboglu H T, Baykal and Sermutlu E 2006 Opt. Commnu. 265 399
[1] Diffraction deep neural network based orbital angular momentum mode recognition scheme in oceanic turbulence
Hai-Chao Zhan(詹海潮), Bing Chen(陈兵), Yi-Xiang Peng(彭怡翔), Le Wang(王乐), Wen-Nai Wang(王文鼐), and Sheng-Mei Zhao(赵生妹). Chin. Phys. B, 2023, 32(4): 044208.
[2] Molecular dynamics study of interactions between edge dislocation and irradiation-induced defects in Fe–10Ni–20Cr alloy
Tao-Wen Xiong(熊涛文), Xiao-Ping Chen(陈小平), Ye-Ping Lin(林也平), Xin-Fu He(贺新福), Wen Yang(杨文), Wang-Yu Hu(胡望宇), Fei Gao(高飞), and Hui-Qiu Deng(邓辉球). Chin. Phys. B, 2023, 32(2): 020206.
[3] Properties of off-axis hollow Gaussian-Schell model vortex beam propagating in turbulent atmosphere
Yan-Song Song(宋延嵩), Ke-Yan Dong(董科研), Shuai Chang(常帅), Yan Dong(董岩), Lei Zhang(张雷). Chin. Phys. B, 2020, 29(6): 064213.
[4] Relaxed energy and structure of edge dislocation in iron
Zhang Yan(张研), Xie Li-Juan(解丽娟), Zhang Jian-Min(张建民), and Xu Ke-Wei(徐可为). Chin. Phys. B, 2011, 20(2): 026102.
[5] Interaction of two edge dislocations in free-space propagation
He De(何德), Gao Zeng-Hui(高曾辉), Yan Hong-Wei(闫红卫), and Lü Bai-Da(吕百达) . Chin. Phys. B, 2011, 20(1): 014201.
[6] Long- and short-term average intensity for multi-Gaussian beam with a common axis in turbulence
Chu Xiu-Xiang(储修祥). Chin. Phys. B, 2011, 20(1): 014207.
[7] Propagation of partially coherent beams carrying an edge dislocation through atmospheric turbulence along a slant path
Li Jin-Hong(李晋红), Zhang Hong-Run(张洪润), and Lü Bai-Da(吕百达). Chin. Phys. B, 2010, 19(9): 099201.
[8] Investigation of dislocations in 8$^\circ$ off-axis 4H-SiC epilayer
Miao Rui-Xia (苗瑞霞), Zhang Yu-Ming (张玉明), Zhang Yi-Men (张义门), Tang Xiao-Yan (汤晓燕), Gai Qing-Feng (盖庆丰). Chin. Phys. B, 2010, 19(7): 076106.
[9] Consistency of the directionality of partially coherent beams inturbulence expressed in terms of the angular spread and the far-field average intensity
Chen Xiao-Wen(陈晓文) and Ji Xiao-Ling(季小玲). Chin. Phys. B, 2010, 19(2): 024203.
[10] Elastic behaviour of an edge dislocation near a sharp crack emanating from a semi-elliptical blunt crack
Fang Qi-Hong(方棋洪), Song Hao-Peng(宋豪鹏), and Liu You-Wen(刘又文). Chin. Phys. B, 2010, 19(1): 016102.
[11] Influence of dislocations in the GaN layer on the electrical properties of an AlGaN/GaN heterostructure
Gao Zhi-Yuan(高志远),Hao Yue(郝跃), Zhang Jin-Cheng(张进城), Li Pei-Xian(李培咸), and Gu Wen-Ping(谷文萍) . Chin. Phys. B, 2009, 18(11): 4970-4975.
[12] Atomistic simulation of kink structure on edge dislocation in bcc iron
Chen Li-Qun(陈丽群), Wang Chong-Yu(王崇愚), and Yu Tao(于涛). Chin. Phys. B, 2008, 17(2): 662-668.
No Suggested Reading articles found!