1 Institute of Plasma Physics, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, China; 2 University of Science and Technology of China, Hefei 230026, China; 3 Centre of Magnetic Fusion Theory, Chinese Academy of Sciences, Hefei 230031, China
Abstract The lower hybrid current drive is a potential candidate for sustaining plasma current in tokamak steady-state operations, which could be used in China Fusion Engineering Test Reactor (CFETR) with input power up to a few tens of megawatts. Such high input power could trigger the well-known parametric instabilities (PIs) at the plasma edge affecting the propagation and absorption of the lower hybrid pump waves. By analytically solving the nonlinear dispersion relation describing PIs, an explicit expression of the PI growth rate is obtained and analyzed in detail. It is found that pressure is the key parameter determining the PI characteristics. Ion sound quasi-mode is the dominant decay channel in the low-pressure regime, while the ion cyclotron quasi-mode (ICQM), as well as its harmonics, becomes dominant in the intermediate regime. In the high-pressure regime, only one mixed channel is found, which is related to Landau damping by free-streaming ions. Analytical expressions of growth rates of these decay channels are also obtained to show the parameter dependence at different pressure limits. The above analytical results are used to estimate the PIs on a typical profile of CFETR, and verified by corresponding numerical calculations. ICQM is found to be the strongest decay channel with a considerable growth rate for CFETR.
Fund: Project supported by the National Key Research and Development Program of China (Grant Nos. 2017YFE0300406 and 2019YFE00308050) and the National Natural Science Foundation of China (Grant Nos. 11975272, 12175274, 12005258, and 11705236). We sincerely appreciate the data support from the CFETR physics team.
Corresponding Authors:
Nong Xiang, Chunyun Gan
E-mail: xiangn@ipp.ac.cn;cygan@ipp.ac.cn
Cite this article:
Taotao Zhou(周涛涛), Nong Xiang(项农), Chunyun Gan(甘春芸), Guozhang Jia(贾国章), and Jiale Chen(陈佳乐) Parametric decay instabilities of lower hybrid waves on CFETR 2022 Chin. Phys. B 31 095201
[1] Luce T C 2011 Phys. Plasmas18 030501 [2] Giruzzi G, Artaud J F, Baruzzo M, Bolzonella T, Fable E, Garzotti L, Ivanova-Stanik I, Kemp R, King D B, Schneider M, Stankiewicz R, Stepniewski W, Vincenzi P, Ward D and Zagorski R 2015 Nucl. Fusion55 073002 [3] Fisch N J 1987 Rev. Mod. Phys.59 175 [4] Bernabei S, Daughney C, Efthimion P, Hooke W, Hosea J, Jobes F, Martin A, Mazzucato E, Meservey E, Motley R, Stevens J, Von Goeler S and Wilson R 1982 Phys. Rev. Lett.49 1255 [5] Song Y T, Wu S T, Li J G, Wan B N, Wan Y X, Fu P, Ye M Y, Zheng J X, Lu K, Gao X G, Liu S M, Liu X F, Lei M Z, Peng X B and Chen Y 2014 IEEE Trans. Plasma Sci.42 503 [6] Zhuang G, Li G Q, Li J, Wan Y X, Liu Y, Wang X L, Song Y T, Chan V, Yang Q W, Wan B N, Duan X R, Fu P, Xiao B J and the CFETR Design Team 2019 Nucl. Fusion59 112010 [7] Liu C S, Tripathi V K and Chan V S 1984 Phys. Fluids27 1709 [8] Takase Y, Porkolab M, Schuss J J, Watterson R L and Fiore C L 1985 Phys. Fluids28 983 [9] Cesario R, Amicucci L, Calabró G, Cardinali A, Castaldo C, Marinucci M, Panaccione L, Pericoli-Ridolfini V, Tuccillo A A and Tudisco O 2009 AIP Conf. Proc.1187 419 [10] Liu C S and Tripathi V K 1986 Phys. Rep.130 143 [11] Cesario R and Cardinali A 1989 Nucl. Fusion29 1709 [12] Takase Y and Porkolab M 1983 Phys. Fluids26 2992 [13] Kindel J M, Okuda H and Dawson J M 1972 Phys. Rev. Lett.29 995 [14] Kaw P K, Lin A T and Dawson J M 1973 Phys. Fluids16 1967 [15] Porkolab M 1977 Phys. Fluids20 2058 [16] Porkolab M 1974 Phys. Fluids17 1432 [17] Tripathi V K 1977 Phys. Fluids20 1525 [18] Porkolab M, Bernabei S, Hooke W M, Motley R W and Nagashima T 1977 Phys. Rev. Lett.38 230 [19] Porkolab M, Schuss J J, Lloyd B, Takase Y, Texter S, Bonoli P, Fiore C, Gandy R, Gwinn D, Lipschultz E, Marmar E, Pappas D, Parker R and Pribyl P 1984 Phys. Rev. Lett.53 450 [20] Cesario R, Cardianli A, Castaldo C, Paoletti F and Mazon D 2004 Phys. Rev. lett.92 175002 [21] Napoli F, Castaldo C, Cesario R and Schettini G 2012 J. Phys.:Conf. Ser.260 12008 [22] Zhao A H and Gao Z 2013 Nucl. Fusion53 083015 [23] Cesario R, Amicucci L, Castaldo C, Marinucci M, Napoli F, Paoletti F, De Arcangelis D, Ferrari M, Galli A, Gallo G, Pullara E, Schettini G and Tuccillo A A 2014 Nucl. Fusion54 043002 [24] Ding B J, Li Y C, Zhang L, Li M H, Wei W, Kong E H, Wang M, Xu H D, Wang S L, Xu G S, Zhao L M, Hu H C, Jia H, Cheng M, Yang Y, Liu L, Zhao H L, Peysson Y, Decker J, Goniche M, Amicucci L, Cesario R, Tuccillo A A, Baek S G, Parker R, Bonoli P T, Paoletti F, Yang C, Shan J F, Liu F K, Zhao Y P, Gong X Z, Hu L Q, Gao X, Wan B N, Li J G and the EAST team 2015 Nucl. Fusion55 093030 [25] Baek S G, Parker R R, Bonoli P T, Shiraiwa S, Wallace G M, LaBombard B, Faust I C, Porkolab M and Whyte D G 2015 Nucl. Fusion55 043009 [26] Baek S G, Wallace G M, Bonoli P T, Brunner D, Faust I C, Hubbard A E, Hughes J W, LaBombard B, Parker R R, Porkolab M, Shiraiwa S and Wukitch S 2018 Phys. Rev. Lett.121 055001 [27] Cardinali A, Castaldo C, Cesario R, Santini F, Amicucci L, Ceccuzzi S, Galli A, Mirizzi F, Napoli F, Panaccione L, Schettini G and Tuccillo A A 2017 Plasma Phys. Control. Fusion59 074002 [28] Chen J L, Jia G Z and Xiang N 2021 J. Fusion Energy40 1 [29] Cesario R, Cardinali A, Castaldo C, Paoletti F, Fundamenski W, Hacquin S and the JET-EFDA workprogramme contributors 2006 Nucl. Fusion46 462 [30] Li M H, Ding B J, Zhang J Z, Gan K F, Wang H Q, Peysson Y, Decker J, Zhang L, Wei W, Li Y C, Wu Z G, Ma W D, Jia H, Chen M, Yang Y, Feng J Q, Wang M, Xu H D, Shan J F, Liu F K and EAST Team 2014 Phys. Plasmas21 062510 [31] Liu Z Y, Gao Z and Zhao A H 2019 Phys. Plamsas26 042117 [32] Triphathi V K, Liu C S and Grebogi C 1979 Phys. Fluids22 301 [33] Swanson D G 2003 Plamsa Waves, 2nd edn. (Auburn:Auburn University) p. 84 [34] Brambilla M 1976 Plasma Phys.18 669 [35] Glagolev V M 1972 Plasma Phys.14 301 [36] Liu L, Kessel C, Chan V, Guo Y, Chen J L, Jian X, Mao S F, Ye M Y and CFETR Physics Team 2018 Nucl. Fusion58 096009 [37] Rosenbluth M N 1972 Phys. Rev. Lett.29 565 [38] Chen L and Berger R L 1977 Nucl. Fusion17 779 [39] Castaldo C, Di Siena A, Fedele R, Napoli F, Amicucci L, Cesario R and Schettini G 2019 Nucl. Fusion25 016003 [40] Liu Z Y, Gao Z and Zhao A H 2020 Phys. Plasmas27 042503
Investigation of lower hybrid current drive during H-mode in EAST tokamak Li Miao-Hui(李妙辉), Ding Bo-Jiang(丁伯江), Kong Er-Hua(孔二华), Zhang Lei(张磊), Zhang Xin-Jun(张新军), Qian Jin-Ping(钱金平), Yan Ning(颜宁), Han Xiao-Feng(韩效锋), Shan Jia-Fang(单家方), Liu Fu-Kun(刘甫坤), Wang Mao(王茂), Xu Han-Dong(徐旵东), and Wan Bao-Nian(万宝年) . Chin. Phys. B, 2011, 20(12): 125202.
[6]
AC operation and runaway electron behaviour in HT-7 tokamak Lu Hong-Wei(卢洪伟), Hu Li-Qun(胡立群), Zhou Rui-Jie(周瑞杰), Lin Shi-Yao(林士耀), Zhong Guo-Qiang(钟国强), Wang Shao-Feng(王少锋), Chen Kai-Yun(陈开云), Xu Ping(许平), Zhang Ji-Zong(张继宗) Ling Bi-Li(凌必利), Mao Song-Tao(毛松涛), Duan Yan-Min(段艳敏), and HT-7 Team. Chin. Phys. B, 2010, 19(6): 065201.
Fast electron dynamics in lower hybrid current drive experiment on HT-7 tokamak Shi Yue-Jiang (石跃江), Wan Bao-Nian (万宝年), Chen Zhong-Yong (陈忠勇), Hu Li-Qun (胡立群), Lin Shi-Yao (林士耀), Ruan Huai-Lin (阮怀林), Qian Jin-Ping (钱金平), Zhen Xiang-Jun (甄香君), Ding Bo-Jiang (丁伯江), Kuang Guang-Li (匡光力), Li Jian-Gang (李建刚), HT-7 Team. Chin. Phys. B, 2005, 14(6): 1193-1198.
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.