PHYSICS OF GASES, PLASMAS, AND ELECTRIC DISCHARGES |
Prev
Next
|
|
|
Parametric decay instabilities of lower hybrid waves on CFETR |
Taotao Zhou(周涛涛)1,2, Nong Xiang(项农)1,3,†, Chunyun Gan(甘春芸)1,3,‡, Guozhang Jia(贾国章)1,3, and Jiale Chen(陈佳乐)1,3 |
1 Institute of Plasma Physics, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, China; 2 University of Science and Technology of China, Hefei 230026, China; 3 Centre of Magnetic Fusion Theory, Chinese Academy of Sciences, Hefei 230031, China |
|
|
Abstract The lower hybrid current drive is a potential candidate for sustaining plasma current in tokamak steady-state operations, which could be used in China Fusion Engineering Test Reactor (CFETR) with input power up to a few tens of megawatts. Such high input power could trigger the well-known parametric instabilities (PIs) at the plasma edge affecting the propagation and absorption of the lower hybrid pump waves. By analytically solving the nonlinear dispersion relation describing PIs, an explicit expression of the PI growth rate is obtained and analyzed in detail. It is found that pressure is the key parameter determining the PI characteristics. Ion sound quasi-mode is the dominant decay channel in the low-pressure regime, while the ion cyclotron quasi-mode (ICQM), as well as its harmonics, becomes dominant in the intermediate regime. In the high-pressure regime, only one mixed channel is found, which is related to Landau damping by free-streaming ions. Analytical expressions of growth rates of these decay channels are also obtained to show the parameter dependence at different pressure limits. The above analytical results are used to estimate the PIs on a typical profile of CFETR, and verified by corresponding numerical calculations. ICQM is found to be the strongest decay channel with a considerable growth rate for CFETR.
|
Received: 20 January 2022
Revised: 01 April 2022
Accepted manuscript online: 18 April 2022
|
PACS:
|
52.35.Hr
|
(Electromagnetic waves (e.g., electron-cyclotron, Whistler, Bernstein, upper hybrid, lower hybrid))
|
|
52.35.Mw
|
(Nonlinear phenomena: waves, wave propagation, and other interactions (including parametric effects, mode coupling, ponderomotive effects, etc.))
|
|
52.55.Fa
|
(Tokamaks, spherical tokamaks)
|
|
Fund: Project supported by the National Key Research and Development Program of China (Grant Nos. 2017YFE0300406 and 2019YFE00308050) and the National Natural Science Foundation of China (Grant Nos. 11975272, 12175274, 12005258, and 11705236). We sincerely appreciate the data support from the CFETR physics team. |
Corresponding Authors:
Nong Xiang, Chunyun Gan
E-mail: xiangn@ipp.ac.cn;cygan@ipp.ac.cn
|
Cite this article:
Taotao Zhou(周涛涛), Nong Xiang(项农), Chunyun Gan(甘春芸), Guozhang Jia(贾国章), and Jiale Chen(陈佳乐) Parametric decay instabilities of lower hybrid waves on CFETR 2022 Chin. Phys. B 31 095201
|
[1] Luce T C 2011 Phys. Plasmas 18 030501 [2] Giruzzi G, Artaud J F, Baruzzo M, Bolzonella T, Fable E, Garzotti L, Ivanova-Stanik I, Kemp R, King D B, Schneider M, Stankiewicz R, Stepniewski W, Vincenzi P, Ward D and Zagorski R 2015 Nucl. Fusion 55 073002 [3] Fisch N J 1987 Rev. Mod. Phys. 59 175 [4] Bernabei S, Daughney C, Efthimion P, Hooke W, Hosea J, Jobes F, Martin A, Mazzucato E, Meservey E, Motley R, Stevens J, Von Goeler S and Wilson R 1982 Phys. Rev. Lett. 49 1255 [5] Song Y T, Wu S T, Li J G, Wan B N, Wan Y X, Fu P, Ye M Y, Zheng J X, Lu K, Gao X G, Liu S M, Liu X F, Lei M Z, Peng X B and Chen Y 2014 IEEE Trans. Plasma Sci. 42 503 [6] Zhuang G, Li G Q, Li J, Wan Y X, Liu Y, Wang X L, Song Y T, Chan V, Yang Q W, Wan B N, Duan X R, Fu P, Xiao B J and the CFETR Design Team 2019 Nucl. Fusion 59 112010 [7] Liu C S, Tripathi V K and Chan V S 1984 Phys. Fluids 27 1709 [8] Takase Y, Porkolab M, Schuss J J, Watterson R L and Fiore C L 1985 Phys. Fluids 28 983 [9] Cesario R, Amicucci L, Calabró G, Cardinali A, Castaldo C, Marinucci M, Panaccione L, Pericoli-Ridolfini V, Tuccillo A A and Tudisco O 2009 AIP Conf. Proc. 1187 419 [10] Liu C S and Tripathi V K 1986 Phys. Rep. 130 143 [11] Cesario R and Cardinali A 1989 Nucl. Fusion 29 1709 [12] Takase Y and Porkolab M 1983 Phys. Fluids 26 2992 [13] Kindel J M, Okuda H and Dawson J M 1972 Phys. Rev. Lett. 29 995 [14] Kaw P K, Lin A T and Dawson J M 1973 Phys. Fluids 16 1967 [15] Porkolab M 1977 Phys. Fluids 20 2058 [16] Porkolab M 1974 Phys. Fluids 17 1432 [17] Tripathi V K 1977 Phys. Fluids 20 1525 [18] Porkolab M, Bernabei S, Hooke W M, Motley R W and Nagashima T 1977 Phys. Rev. Lett. 38 230 [19] Porkolab M, Schuss J J, Lloyd B, Takase Y, Texter S, Bonoli P, Fiore C, Gandy R, Gwinn D, Lipschultz E, Marmar E, Pappas D, Parker R and Pribyl P 1984 Phys. Rev. Lett. 53 450 [20] Cesario R, Cardianli A, Castaldo C, Paoletti F and Mazon D 2004 Phys. Rev. lett. 92 175002 [21] Napoli F, Castaldo C, Cesario R and Schettini G 2012 J. Phys.:Conf. Ser. 260 12008 [22] Zhao A H and Gao Z 2013 Nucl. Fusion 53 083015 [23] Cesario R, Amicucci L, Castaldo C, Marinucci M, Napoli F, Paoletti F, De Arcangelis D, Ferrari M, Galli A, Gallo G, Pullara E, Schettini G and Tuccillo A A 2014 Nucl. Fusion 54 043002 [24] Ding B J, Li Y C, Zhang L, Li M H, Wei W, Kong E H, Wang M, Xu H D, Wang S L, Xu G S, Zhao L M, Hu H C, Jia H, Cheng M, Yang Y, Liu L, Zhao H L, Peysson Y, Decker J, Goniche M, Amicucci L, Cesario R, Tuccillo A A, Baek S G, Parker R, Bonoli P T, Paoletti F, Yang C, Shan J F, Liu F K, Zhao Y P, Gong X Z, Hu L Q, Gao X, Wan B N, Li J G and the EAST team 2015 Nucl. Fusion 55 093030 [25] Baek S G, Parker R R, Bonoli P T, Shiraiwa S, Wallace G M, LaBombard B, Faust I C, Porkolab M and Whyte D G 2015 Nucl. Fusion 55 043009 [26] Baek S G, Wallace G M, Bonoli P T, Brunner D, Faust I C, Hubbard A E, Hughes J W, LaBombard B, Parker R R, Porkolab M, Shiraiwa S and Wukitch S 2018 Phys. Rev. Lett. 121 055001 [27] Cardinali A, Castaldo C, Cesario R, Santini F, Amicucci L, Ceccuzzi S, Galli A, Mirizzi F, Napoli F, Panaccione L, Schettini G and Tuccillo A A 2017 Plasma Phys. Control. Fusion 59 074002 [28] Chen J L, Jia G Z and Xiang N 2021 J. Fusion Energy 40 1 [29] Cesario R, Cardinali A, Castaldo C, Paoletti F, Fundamenski W, Hacquin S and the JET-EFDA workprogramme contributors 2006 Nucl. Fusion 46 462 [30] Li M H, Ding B J, Zhang J Z, Gan K F, Wang H Q, Peysson Y, Decker J, Zhang L, Wei W, Li Y C, Wu Z G, Ma W D, Jia H, Chen M, Yang Y, Feng J Q, Wang M, Xu H D, Shan J F, Liu F K and EAST Team 2014 Phys. Plasmas 21 062510 [31] Liu Z Y, Gao Z and Zhao A H 2019 Phys. Plamsas 26 042117 [32] Triphathi V K, Liu C S and Grebogi C 1979 Phys. Fluids 22 301 [33] Swanson D G 2003 Plamsa Waves, 2nd edn. (Auburn:Auburn University) p. 84 [34] Brambilla M 1976 Plasma Phys. 18 669 [35] Glagolev V M 1972 Plasma Phys. 14 301 [36] Liu L, Kessel C, Chan V, Guo Y, Chen J L, Jian X, Mao S F, Ye M Y and CFETR Physics Team 2018 Nucl. Fusion 58 096009 [37] Rosenbluth M N 1972 Phys. Rev. Lett. 29 565 [38] Chen L and Berger R L 1977 Nucl. Fusion 17 779 [39] Castaldo C, Di Siena A, Fedele R, Napoli F, Amicucci L, Cesario R and Schettini G 2019 Nucl. Fusion 25 016003 [40] Liu Z Y, Gao Z and Zhao A H 2020 Phys. Plasmas 27 042503 |
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|