Please wait a minute...
Chin. Phys. B, 2019, Vol. 28(10): 104702    DOI: 10.1088/1674-1056/ab3f27
ELECTROMAGNETISM, OPTICS, ACOUSTICS, HEAT TRANSFER, CLASSICAL MECHANICS, AND FLUID DYNAMICS Prev   Next  

Numerical simulation on dynamic behaviors of bubbles flowing through bifurcate T-junction in microfluidic device

Liang-Yu Wu(吴梁玉)1, Ling-Bo Liu(刘凌波)1, Xiao-Tian Han(韩笑天)1, Qian-Wen Li(李倩文)2, Wei-Bo Yang(杨卫波)1
1 School of Hydraulic, Energy, and Power Engineering, Yangzhou University, Yangzhou 225127, China;
2 Key Laboratory of Energy Thermal Conversion and Control of Ministry of Education, School of Energy and Environment, Southeast University, Nanjing 210096, China
Abstract  Based on the volume of fluid (VOF) method, a numerical model of bubbles splitting in a microfluidic device with T-junction is developed and solved numerically. Various flow patterns are distinguished and the effects of bubble length, capillary number, and diameter ratio between the mother channel and branch are discussed. The break-up mechanism is explored in particular. The results indicate that the behaviors of the bubbles can be classified into two categories:break-up and non-break. Under the condition of slug flowing, the branches are obstructed by the bubbles that the pressure difference drives the bubbles into break-up state, while the bubbles that retain non-break state flow into an arbitrary branch under bubbling flow condition. The break-up of the short bubbles only occurs when the viscous force from the continuous phase overcomes the interfacial tension. The behavior of the bubbles transits from non-break to break-up with the increase of capillary number. In addition, the increasing of the diameter ratio is beneficial to the symmetrical break-up of the bubbles.
Keywords:  microfluidic      T-junction      bubble break-up      numerical simulation  
Received:  10 May 2019      Revised:  02 August 2019      Accepted manuscript online: 
PACS:  47.55.D- (Drops and bubbles)  
  47.55.dr (Interactions with surfaces)  
  68.03.Cd (Surface tension and related phenomena)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 51706194 and 51876184).
Corresponding Authors:  Wei-Bo Yang     E-mail:  wbyang@yzu.edu.cn

Cite this article: 

Liang-Yu Wu(吴梁玉), Ling-Bo Liu(刘凌波), Xiao-Tian Han(韩笑天), Qian-Wen Li(李倩文), Wei-Bo Yang(杨卫波) Numerical simulation on dynamic behaviors of bubbles flowing through bifurcate T-junction in microfluidic device 2019 Chin. Phys. B 28 104702

[41] Li J, Renardy Y Y and Renardy M 2000 Phys. Fluids 12 269
[1] Halpern D, Jensen O and Grotberg J 1998 J. Appl. Physiol. 85 333
[42] Brackbill J U, Kothe D B and Zemach C 1992 J. Comput. Phys. 100 335
[2] Wang H, Zhao Z, Liu Y, Shao C, Bian F and Zhao Y 2018 Sci. Adv. 4 eaat2816
[3] Liu M, Su L, Li J, Chen S, Liu Y, Li J, Li B, Chen Y and Zhang Z 2016 Matter Radiat. Extremes 1 213
[4] Chen Y, Liu X and Shi M 2013 Appl. Phys. Lett. 102 051609
[5] Zhang C B, Gao W, Zhao Y J and Chen Y P 2018 Appl. Phys. Lett. 113 203702
[6] Fu T, Ma Y, Funfschilling D and Li H Z 2011 Chem. Eng. Sci. 66 4184
[7] Zhang C B, Yu F W, Li X J and Chen Y P 2019 AIChE J. 65 1119
[8] Kreutzer M T, Kapteijn F, Moulijn J A and Heiszwolf J J 2005 Chem. Eng. Sci. 60 5895
[9] Shin S, Shardt O, Warren P B and Stone H A 2017 Nat. Commun. 8 15181
[10] Park M K, Jun S, Kim I, Jin S M, Kim J G, Shin T J and Lee E 2015 Adv. Funct. Mater. 25 4570
[11] Lee T Y, Ku M, Kim B, Lee S, Yang J and Kim S H 2017 Small 13 1700646
[12] Günther A and Jensen K F 2006 Lab Chip 6 1487
[13] Glawdel T, Elbuken C and Ren C L 2012 Phys. Rev. E 85 016323
[14] Leshansky A, Afkhami S, Jullien M C and Tabeling P 2012 Phys. Rev. Lett. 108 264502
[15] Taylor G I 1932 Proc. R. Soc. A 138 41
[16] Chen Y P, Gao W, Zhang C B and Zhao Y J 2016 Lab Chip 16 1332
[17] Liu X, Chen Y and Shi M 2013 Int. J. Therm. Sci. 65 224
[18] Ma R, Fu T, Zhang Q, Zhu C, Ma Y and Li H Z 2017 J. Ind. Eng. Chem. 54 408
[19] Liang D, Ma R, Fu T T, Zhu C Y, Wang K, Ma Y G and Luo G S 2019 Chem. Eng. Sci. 200 248
[20] Cheng W L, Sadr R, Dai J and Han A 2018 Biomed. Microdevices 20 72
[21] Link D, Anna S L, Weitz D and Stone H 2004 Phys. Rev. Lett. 92 054503
[22] Jullien M C, Tsang Mui Ching M J, Cohen C, Menetrier L and Tabeling P 2009 Phys. Fluids 21 072001
[23] Leshansky A M and Pismen L M 2009 Phys. Fluids 21 023303
[24] Ba Y, Liu H, Sun J and Zheng R 2015 Int. J. Heat Mass Transfer 90 931
[25] Liu H and Zhang Y 2009 J. Appl. Phys. 106 034906
[26] Lim A E, Lim C Y, Lam Y C and Lim Y H 2019 Chem. Eng. Sci. 202 417
[27] Chen Y P and Deng Z L 2017 J. Fluid Mech. 819 401
[28] Bedram A, Moosavi A and Hannani S K 2015 Phys. Rev. E 91 053012
[29] Liu H, Ju Y, Wang N, Xi G and Zhang Y 2015 Phys. Rev. E 92 033306
[30] Caprini D, Sinibaldi G, Marino L and Casciola C M 2018 Microfluid Nanofluid 22 85
[31] Zhang C B, Deng Z L and Chen Y P 2014 Int. J. Heat Mass Transfer 70 322
[32] Li Q X, Chai Z H, Shi B C and Liang H 2014 Phys. Rev. E 90 043015
[33] Liu Y Y, Yue J, Zhao S N, Yao C Q and Chen G W 2018 AIChE J. 64 376
[34] Liu X, Zhang C, Yu W, Deng Z and Chen Y 2016 Sci. Bull. 61 811
[35] Wang J, Liu J, Han J and Guan J 2013 Phys. Rev. Lett. 110 066001
[36] Zhou C, Yue P and Feng J J 2006 Phys. Fluids 18 092105
[37] Tryggvason G, Bunner B, Esmaeeli A, Juric D, Al-Rawahi N, Tauber W, Han J, Nas S and Jan Y J 2001 J. Comput. Phys. 169 708
[38] Hirt C W and Nichols B D 1981 J. Comput. Phys. 39 201
[39] Smith K, Ottino J and De La Cruz M O 2004 Phys. Rev. Lett. 93 204501
[40] Cristini V and Tan Y C 2004 Lab Chip 4 257
[41] Li J, Renardy Y Y and Renardy M 2000 Phys. Fluids 12 269
[42] Brackbill J U, Kothe D B and Zemach C 1992 J. Comput. Phys. 100 335
[1] Quantitative measurement of the charge carrier concentration using dielectric force microscopy
Junqi Lai(赖君奇), Bowen Chen(陈博文), Zhiwei Xing(邢志伟), Xuefei Li(李雪飞), Shulong Lu(陆书龙), Qi Chen(陈琪), and Liwei Chen(陈立桅). Chin. Phys. B, 2023, 32(3): 037202.
[2] Micro-mechanism study of the effect of Cd-free buffer layers ZnXO (X=Mg/Sn) on the performance of flexible Cu2ZnSn(S, Se)4 solar cell
Caixia Zhang(张彩霞), Yaling Li(李雅玲), Beibei Lin(林蓓蓓), Jianlong Tang(唐建龙), Quanzhen Sun(孙全震), Weihao Xie(谢暐昊), Hui Deng(邓辉), Qiao Zheng(郑巧), and Shuying Cheng(程树英). Chin. Phys. B, 2023, 32(2): 028801.
[3] Theoretical and experimental studies on high-power laser-induced thermal blooming effect in chamber with different gases
Xiangyizheng Wu(吴祥议政), Jian Xu(徐健), Keling Gong(龚柯菱), Chongfeng Shao(邵崇峰), Yang Kou(寇洋), Yuxuan Zhang(张宇轩), Yong Bo(薄勇), and Qinjun Peng(彭钦军). Chin. Phys. B, 2022, 31(8): 086105.
[4] Spatio-spectral dynamics of soliton pulsation with breathing behavior in the anomalous dispersion fiber laser
Ying Han(韩颖), Bo Gao(高博), Jiayu Huo(霍佳雨), Chunyang Ma(马春阳), Ge Wu(吴戈),Yingying Li(李莹莹), Bingkun Chen(陈炳焜), Yubin Guo(郭玉彬), and Lie Liu(刘列). Chin. Phys. B, 2022, 31(7): 074208.
[5] Data-driven parity-time-symmetric vector rogue wave solutions of multi-component nonlinear Schrödinger equation
Li-Jun Chang(常莉君), Yi-Fan Mo(莫一凡), Li-Ming Ling(凌黎明), and De-Lu Zeng(曾德炉). Chin. Phys. B, 2022, 31(6): 060201.
[6] Biophysical model for high-throughput tumor and epithelial cell co-culture in complex biochemical microenvironments
Guoqiang Li(李国强), Yanping Liu(刘艳平), Jingru Yao(姚静如), Kena Song(宋克纳), Gao Wang(王高), Lianjie Zhou(周连杰), Guo Chen(陈果), and Liyu Liu(刘雳宇). Chin. Phys. B, 2022, 31(2): 028703.
[7] Characteristics of secondary electron emission from few layer graphene on silicon (111) surface
Guo-Bao Feng(封国宝), Yun Li(李韵), Xiao-Jun Li(李小军), Gui-Bai Xie(谢贵柏), and Lu Liu(刘璐). Chin. Phys. B, 2022, 31(10): 107901.
[8] Effects of Prandtl number in two-dimensional turbulent convection
Jian-Chao He(何建超), Ming-Wei Fang(方明卫), Zhen-Yuan Gao(高振源), Shi-Di Huang(黄仕迪), and Yun Bao(包芸). Chin. Phys. B, 2021, 30(9): 094701.
[9] Evolution of melt convection in a liquid metal driven by a pulsed electric current
Yanyi Xu(徐燕祎), Yunhu Zhang(张云虎), Tianqing Zheng(郑天晴), Yongyong Gong(龚永勇), Changjiang Song(宋长江), Hongxing Zheng(郑红星), and Qijie Zhai(翟启杰). Chin. Phys. B, 2021, 30(8): 084701.
[10] Effect of pressure and space between electrodes on the deposition of SiNxHy films in a capacitively coupled plasma reactor
Meryem Grari, CifAllah Zoheir, Yasser Yousfi, and Abdelhak Benbrik. Chin. Phys. B, 2021, 30(5): 055205.
[11] Numerical simulation of super-continuum laser propagation in turbulent atmosphere
Ya-Qian Li(李雅倩), Wen-Yue Zhu (朱文越), and Xian-Mei Qian(钱仙妹). Chin. Phys. B, 2021, 30(3): 034201.
[12] Asymmetric coherent rainbows induced by liquid convection
Tingting Shi(施婷婷), Xuan Qian(钱轩), Tianjiao Sun(孙天娇), Li Cheng(程力), Runjiang Dou(窦润江), Liyuan Liu(刘力源), and Yang Ji(姬扬). Chin. Phys. B, 2021, 30(12): 124208.
[13] Effect of external electric field on the terahertz transmission characteristics of electrolyte solutions
Jia-Hui Wang(王佳慧), Guo-Yang Wang(王国阳), Xin Liu(刘欣), Si-Yu Shao(邵思雨), Hai-Yun Huang(黄海云), Chen-Xin Ding(丁晨鑫), Bo Su(苏波), and Cun-Lin Zhang(张存林). Chin. Phys. B, 2021, 30(11): 110204.
[14] CO2 emission control in new CM car-following model with feedback control of the optimal estimation of velocity difference under V2X environment
Guang-Han Peng(彭光含), Rui Tang(汤瑞), Hua Kuang(邝华), Hui-Li Tan(谭惠丽), and Tao Chen(陈陶). Chin. Phys. B, 2021, 30(10): 108901.
[15] Numerical simulation of chorus-driving acceleration of relativistic electrons at extremely low L-shell during geomagnetic storms
Zhen-Xia Zhang(张振霞), Ruo-Xian Zhou(周若贤), Man Hua(花漫), Xin-Qiao Li(李新乔), Bin-Bin Ni(倪彬彬), and Ju-Tao Yang(杨巨涛). Chin. Phys. B, 2021, 30(10): 109401.
No Suggested Reading articles found!