CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES |
Prev
Next
|
|
|
Enhanced spin-dependent thermopower in a double-quantum-dot sandwiched between two-dimensional electron gases |
Feng Chi(迟锋)1, Zhen-Guo Fu(付振国)2, Liming Liu(刘黎明)1, Ping Zhang(张平)2 |
1 School of Electronic and Information Engineering, University of Electronic Science and Technology of China, Zhongshan Institute, Zhongshan 528400, China; 2 Institute of Applied Physics and Computational Mathematics, Beijing 100088, China |
|
|
Abstract We study the spin-dependent thermopower in a double-quantum-dot (DQD) embedded between the left and right two-dimensional electron gases (2DEGs) in doped quantum wells under an in-plane magnetic field. When the separation between the DQD is smaller than the Fermi wavelength in the 2DEGs, the asymmetry in the dots' energy levels leads to pronounced quantum interference effects characterized by the Dicke line-shape of the conductance, which are sensitive to the properties of the 2DEGs. The magnitude of the thermopower, which denotes the generated voltage in response to an infinitesimal temperature difference between the two 2DEGs under vanishing charge current, will be obviously enhanced by the Dicke effect. The application of the in-plane magnetic field results in the polarization of the spin-up and spin-down conductances and thermopowers, and enables an efficient spin-filter device in addition to a tunable pure spin thermopower in the absence of its charge counterpart.
|
Received: 22 July 2019
Revised: 26 August 2019
Accepted manuscript online:
|
PACS:
|
73.21.La
|
(Quantum dots)
|
|
72.15.Jf
|
(Thermoelectric and thermomagnetic effects)
|
|
73.50.Lw
|
(Thermoelectric effects)
|
|
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 61274101, 51362031, and 11675023), the Innovation Development Fund of China Academy of Engineering Physics (CAEP) (Grant No. ZYCX1921-02), the Presidential Foundation of CAEP (Grant No. YZ2015014), the Initial Project of University of Electronic Science and Technology of China, Zhongshan Institute (Grant No. 415YKQ02), Science and Technology Bureau of Zhongshan, China (Grant Nos. 417S26 and 180809162197886). |
Corresponding Authors:
Zhen-Guo Fu, Ping Zhang
E-mail: fu_zhenguo@iapcm.ac.cn;zhang_ping@iapcm.ac.cn
|
Cite this article:
Feng Chi(迟锋), Zhen-Guo Fu(付振国), Liming Liu(刘黎明), Ping Zhang(张平) Enhanced spin-dependent thermopower in a double-quantum-dot sandwiched between two-dimensional electron gases 2019 Chin. Phys. B 28 107305
|
[44] |
Apalkov V M 2007 Phys. Rev. B 75 045337
|
[1] |
Bauer G E, Saitoh E and van Wees B J 2010 Nat. Mater. 150 391
|
[45] |
Petrosyan L S and Shahbazyan T V 2015 Phys. Rev. B 92 115423
|
[2] |
Uchida K, Takahashi S, Harii K, Ieda J, Koshibae W, Ando K, Maekawa S and Saitoh E 2008 Nature 455 778
|
[46] |
Wang F N, Li J C, Li Y, Zhang X M, Wang X J, Chen Y F, Liu J, Wang C L, Zhao M L and Mei L M 2019 Chin. Phys. B 28 047101
|
[47] |
Žutić I, Fabian J and Sarma S D 2004 Rev. Mod. Phys. 76 323
|
[3] |
Uchida K, Adachi H, Ota T, Nakayama H, Maekawa S and Saitoh E 2010 Appl. Phys. Lett. 97 172505
|
[4] |
Uchida K, Xiao J, Adachi H, Ohe J, Takahashi S, Ieda J, Ota T, Kajiwara Y, Umezawa H, Kawai H, Bauer G E, Maekawa S and Saitoh E 2010 Nat. Mater. 9 894
|
[5] |
Bosu S, Sakuraba Y, Uchida K, Saito K, Ota T, Saitoh E and Takanashi K 2011 Phys. Rev. B 83 224401
|
[6] |
Jaworski C M, Yang J, Mack S, Awschalom D, Heremans J and Myers R 2010 Nat. Mater. 9 898
|
[7] |
Jaworski C, Myers R, Halperin J E and Heremans J 2012 Nature 487 210
|
[8] |
Wu S M, Pearson J E and Bhattacharya A 2015 Phys. Rev. Lett. 114 186602
|
[9] |
Wu S M, Zhang W, Kc A, Borisov P, Pearson J E, Jiang J S, Lederman D, Hoffmann A and Bhattacharya A 2016 Phys. Rev. Lett. 116 097204
|
[10] |
Tang G M, Chen X B, Ren J and Wang J 2018 Phys. Rev. B 97 081407
|
[11] |
Chang P H, Mahfouzi F, Nagaosa N and Nikolić B K 2014 Phys. Rev. B 89 195418
|
[12] |
Hwang S Y, López R, Lee M and Sánchez D 2014 Phys. Rev. B 90 115301
|
[13] |
Okuma N, Masir M R and MacDonald A H 2017 Phys. Rev. B 95 165418
|
[14] |
Chang K 2011 Physics 40 458
|
[15] |
Zhang L, Lü T Y, Wang H Q, Zhang W X, Yang S W and Zhang J C 2016 RSC Adv. 6 102172
|
[16] |
Lv Y Z, Zhao P and Liu D S 2017 Chin. Phys. Lett. 34 107301
|
[17] |
Hochbaum A I, Chen R, Delgado R D, Liang W, Garnett E C, Najarian M, Majumdar A and Yang P 2008 Nature 451 163
|
[18] |
Boukai A I, Bunimovich Y, Kheli J T, Yu J K, Goddard W A and Heath J R 2008 Nature 451 168
|
[19] |
Reddy P, Jang S Y, Segalman R A and Majumdar A 2017 Science 315 1568
|
[20] |
Zimbovskaya N A 2018 J. Phys.: Condens. Matter 30 305301
|
[21] |
Hammar H, Vasquez J D and Fransson J 2019 Phys. Rev. B 99 115416
|
[22] |
Mahan G D and Sofo J O 1996 Proc. Natl. Acad. Sci. USA 93 7436
|
[23] |
Hu J, Shi Y, Zhang Z, Zhi R Yang S and Zou B 2019 Chin. Phys. B 28 020701
|
[24] |
Bai X F, Chi F, Zheng J and Li Y N 2012 Chin. Phys. B 21 077301
|
[25] |
Xue H J, Lü T Q, Zhang H C, Yin H T, Cui L and He Z L 2012 Chin. Phys. B 21 037201
|
[26] |
Xu W P, Zhang Y Y, Wang Q and Nie Y H 2016 Chin. Phys. B 25 117307
|
[27] |
Scheibner R, Buhmann H, Reuter D, Kiselev M N and Molenkamp L W 2005 Phys. Rev. Lett. 95 176602
|
[28] |
Liu J, Sun Q F and Xie X C 2010 Phys. Rev. B 81 245323
|
[29] |
Chi F, Zheng J, Lu X D and Zhang K C 2011 Phys. Lett. A 375 1352
|
[30] |
Liu Y S, Chi F, Yang X F and Feng J F 2011 J. Appl. Phys. 109 053712
|
[31] |
Liu Y S, Hong X F, Feng J F and Yang X F 2011 Nanoscal. Res. Lett. 6 618
|
[32] |
Zheng J and Chi F 2012 J. Appl. Phys. 111 093702
|
[33] |
Trocha P and Barnaś J 2012 Phys. Rev. B 85 085408
|
[34] |
Zhou X F, Qi F H and Jin G J 2014 J. Appl. Phys. 115 153706
|
[35] |
Yang X, Zheng J and Guo Y 2015 Physica B 461 122
|
[36] |
Yang X, Zheng J, Li C L and Guo Y 2015 J. Phys: Condens. Matter 27 075302
|
[37] |
Karwacki ł and Trocha P 2016 Phys. Rev. B 94 085418
|
[38] |
Andrade J R P, Peña F J, Gonzaíez A, Avalos-Ovando O and Orellana P A 2017 Phys. Rev. B 96 165413
|
[39] |
Wang Q, Xie H Q, Nie Y H and Ren W 2013 Phys. Rev. B 87 075102
|
[40] |
Yao H, Zhang C, Niu P B, Li Z J and Nie Y H 2018 Phys. Lett. A 382 3220
|
[41] |
Liu L M, Chi F, Fu Z G, Yu S C and Chen H W 2018 Nanoscal. Res. Lett. 13 358
|
[42] |
Sun L L, Chi F, Fu Z G, Yu S C, Liu L M and Chen H W 2019 J. Low. Temp. Phys. 194 235
|
[43] |
de Guevara M L L, Claro F and Orellana P A 2003 Phys. Rev. B 67 195335
|
[44] |
Apalkov V M 2007 Phys. Rev. B 75 045337
|
[45] |
Petrosyan L S and Shahbazyan T V 2015 Phys. Rev. B 92 115423
|
[46] |
Wang F N, Li J C, Li Y, Zhang X M, Wang X J, Chen Y F, Liu J, Wang C L, Zhao M L and Mei L M 2019 Chin. Phys. B 28 047101
|
[47] |
Žutić I, Fabian J and Sarma S D 2004 Rev. Mod. Phys. 76 323
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|