Please wait a minute...
Chin. Phys. B, 2019, Vol. 28(8): 087101    DOI: 10.1088/1674-1056/28/8/087101
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES Prev   Next  

Electronic structure from equivalent differential equations of Hartree-Fock equations

Hai Lin(林海)
State Key Laboratory of High Field Laser Physics, Shanghai Institute of Optics and Fine Mechanics, Shanghai 201800, China
Abstract  A strict universal method of calculating the electronic structure of condensed matter from the Hartree-Fock equation is proposed. It is based on a partial differential equation (PDE) strictly equivalent to the Hartree-Fock equation, which is an integral-differential equation of fermion single-body wavefunctions. Although the maximum order of the differential operator in the Hartree-Fock equation is 2, the mathematical property of its integral kernel function can warrant the equation to be strictly equivalent to a 4th-order nonlinear partial differential equation of fermion single-body wavefunctions. This allows the electronic structure calculation to eliminate empirical and random choices of the starting trial wavefunction (which is inevitable for achieving rapid convergence with respect to iterative times, in the iterative method of studying integral-differential equations), and strictly relates the electronic structure to the space boundary conditions of the single-body wavefunction.
Keywords:  Hartree-Fock equation      many-electron system      electronic structure  
Received:  21 January 2019      Revised:  29 April 2019      Accepted manuscript online: 
PACS:  71.10.-w (Theories and models of many-electron systems)  
  71.15.-m (Methods of electronic structure calculations)  
Corresponding Authors:  Hai Lin     E-mail:  linhai@siom.ac.cn

Cite this article: 

Hai Lin(林海) Electronic structure from equivalent differential equations of Hartree-Fock equations 2019 Chin. Phys. B 28 087101

[39] Kittel C 1953 Introduction Solid State Physics (New York: John Wiley Sons) p. 233, Table 12.1
[1] Ring P and Schuck P 1980 The nuclear many-body problem (Springer Verlag)
[2] Hodgson P 1971 Nuclear Reaction and Nuclear Structure (Oxford University Press)
[3] Levine I 1999 Quantum Chemistry (Prentice Hall)
[4] Ziman J M 1972 Principle of the Theory of Solids (Cambridge University Press)
[5] Hartree D R 1928 Proc. Cambridge Phil. Soc. 24 89
[6] Hartree D R 1928 Proc. Cambridge Phil. Soc. 24 111
[7] Fock V 1930 Z. Physik. 61 126
[8] Sherrill C D and Schaefer H F 1999 The Configuration Interaction Method: Advance in Highly Correlated Approaches. Advances in Quantum Chemistry, Vol. 34, ed. Lowdin P O (San Diego, Academic Press) p. 143
[9] Cramer C J 2002 Essentials of Computational Chemistry (Chichester, John Wiley & Sons) 191
[10] Abrikosov A A, Gorkov L P and Dzyaloshinskii Y E 1965 Quantum Field Theoretical Methods in Statistical Physics (New York: Pergamon)
[11] Georges A, Kotliar G, Krauth W and Rozenberg M J 1996 Rev. Mod. Phys. 68 13 and references therein
[12] Kotliar G, et al. 2006 Rev. Mod. Phys. 78 865 and references therein
[13] Freericks J K and Zlatic V 2003 Rev. Mod. Phys. 75 1333 and references therein.
[14] Bickers N E and Scalapino D J 1989 Ann. Phys. 193 206
[15] Aryasetiawan F and Gunnarson O 1998 Rep. Prog. Phys. 61 237
[16] Hedin L and Lundqvist S 1969 in Solid State Physics (New York: Academic) Vol. 23, p. 1
[17] Hohenberg P and Kohn W 1964 Phys. Rev. 136 B864
[18] Kohn W and Sham L J 1965 Phys. Rev. 140 A1133
[19] Sham L J and Kohn W 1966 Phys. Rev. 145 561
[20] Dreizler R M and Gross E K U 1990 Density Functional Theory (New York: Springer)
[21] Alonso J A and Girifalco L A 1978 Phys. Rev. B 17 3735
[22] Janak J F, Moruzzi V L and Williams A R 1975 Phys. Rev. B 12 1257
[23] Perdew J P 1986 Phys. Rev. B 33 8822
[24] Perdew J P and Wang Y 1986 Phys. Rev. B 33 8800
[25] Langreth D C and Perdew J P 1980 Phys. Rev. B 21 5469
[26] Perdew J P, Burke K and Wang Y 1996 Phys. Rev. B 54 16533
[27] Perdew J P and Levy M 1983 Phys. Rev. Lett. 51 1884
[28] Berke A D 1986 J. Chem. Phys. 85 7184
[29] Berke A D 1988 J. Chem. Phys. 88 1053
[30] Berke A D 1993 J. Chem. Phys. 98 1372
[31] Berke A D 1988 Phys. Rev. A. 38 3098
[32] Martin R M 2008 Electronic Structure (Cambridge University Press)
[33] Harrison W A 1966 Pseudopotentials in the theory of metals (New York: Benjamin)
[34] Yu Z M, Liu Y L 2014 Chin. Phys. Lett 31 017103
[35] Peng P, Jiang Y Q 2018 Acta Phys. Sin 67 132101 (in Chinese)
[36] Fang Y Z, Liu J H and Kong X J 2018 Acta Phys. Sin. 67 117101 (in Chinese)
[37] Pan F C, Chen H M and Lin X L 2018 Acta Phys. Sin. 67 107701 (in Chinese)
[38] Ashcroft N W and Mermin N D 1976 Solid State Physics (Harcourt Inc) p. 2
[39] Kittel C 1953 Introduction Solid State Physics (New York: John Wiley Sons) p. 233, Table 12.1
[1] Predicting novel atomic structure of the lowest-energy FenP13-n(n=0-13) clusters: A new parameter for characterizing chemical stability
Yuanqi Jiang(蒋元祺), Ping Peng(彭平). Chin. Phys. B, 2023, 32(4): 047102.
[2] High-temperature ferromagnetism and strong π-conjugation feature in two-dimensional manganese tetranitride
Ming Yan(闫明), Zhi-Yuan Xie(谢志远), and Miao Gao(高淼). Chin. Phys. B, 2023, 32(3): 037104.
[3] Bandgap evolution of Mg3N2 under pressure: Experimental and theoretical studies
Gang Wu(吴刚), Lu Wang(王璐), Kuo Bao(包括), Xianli Li(李贤丽), Sheng Wang(王升), and Chunhong Xu(徐春红). Chin. Phys. B, 2022, 31(6): 066205.
[4] First principles investigation on Li or Sn codoped hexagonal tungsten bronzes as the near-infrared shielding material
Bo-Shen Zhou(周博深), Hao-Ran Gao(高浩然), Yu-Chen Liu(刘雨辰), Zi-Mu Li(李子木),Yang-Yang Huang(黄阳阳), Fu-Chun Liu(刘福春), and Xiao-Chun Wang(王晓春). Chin. Phys. B, 2022, 31(5): 057804.
[5] Temperature dependence of bismuth structures under high pressure
Xiaobing Fan(范小兵), Shikai Xiang(向士凯), and Lingcang Cai(蔡灵仓). Chin. Phys. B, 2022, 31(5): 056101.
[6] Measurement of electronic structure in van der Waals ferromagnet Fe5-xGeTe2
Kui Huang(黄逵), Zhenxian Li(李政贤), Deping Guo(郭的坪), Haifeng Yang(杨海峰), Yiwei Li(李一苇),Aiji Liang(梁爱基), Fan Wu(吴凡), Lixuan Xu(徐丽璇), Lexian Yang(杨乐仙), Wei Ji(季威),Yanfeng Guo(郭艳峰), Yulin Chen(陈宇林), and Zhongkai Liu(柳仲楷). Chin. Phys. B, 2022, 31(5): 057404.
[7] Nonlinear optical properties in n-type quadruple δ-doped GaAs quantum wells
Humberto Noverola-Gamas, Luis Manuel Gaggero-Sager, and Outmane Oubram. Chin. Phys. B, 2022, 31(4): 044203.
[8] High-throughput computational material screening of the cycloalkane-based two-dimensional Dion—Jacobson halide perovskites for optoelectronics
Guoqi Zhao(赵国琪), Jiahao Xie(颉家豪), Kun Zhou(周琨), Bangyu Xing(邢邦昱), Xinjiang Wang(王新江), Fuyu Tian(田伏钰), Xin He(贺欣), and Lijun Zhang(张立军). Chin. Phys. B, 2022, 31(3): 037104.
[9] Electronic structure and spin–orbit coupling in ternary transition metal chalcogenides Cu2TlX2 (X = Se, Te)
Na Qin(秦娜), Xian Du(杜宪), Yangyang Lv(吕洋洋), Lu Kang(康璐), Zhongxu Yin(尹中旭), Jingsong Zhou(周景松), Xu Gu(顾旭), Qinqin Zhang(张琴琴), Runzhe Xu(许润哲), Wenxuan Zhao(赵文轩), Yidian Li(李义典), Shuhua Yao(姚淑华), Yanfeng Chen(陈延峰), Zhongkai Liu(柳仲楷), Lexian Yang(杨乐仙), and Yulin Chen(陈宇林). Chin. Phys. B, 2022, 31(3): 037101.
[10] Transition metal anchored on C9N4 as a single-atom catalyst for CO2 hydrogenation: A first-principles study
Jia-Liang Chen(陈嘉亮), Hui-Jia Hu(胡慧佳), and Shi-Hao Wei(韦世豪). Chin. Phys. B, 2022, 31(10): 107306.
[11] Spin and spin-orbit coupling effects in nickel-based superalloys: A first-principles study on Ni3Al doped with Ta/W/Re
Liping Liu(刘立平), Jin Cao(曹晋), Wei Guo(郭伟), and Chongyu Wang(王崇愚). Chin. Phys. B, 2022, 31(1): 016105.
[12] First-principles study of structural and opto-electronic characteristics of ultra-thin amorphous carbon films
Xiao-Yan Liu(刘晓艳), Lei Wang(王磊), and Yi Tong(童祎). Chin. Phys. B, 2022, 31(1): 016102.
[13] Magnetic and electronic properties of two-dimensional metal-organic frameworks TM3(C2NH)12
Zhen Feng(冯振), Yi Li(李依), Yaqiang Ma(马亚强), Yipeng An(安义鹏), and Xianqi Dai(戴宪起). Chin. Phys. B, 2021, 30(9): 097102.
[14] Single boron atom anchored on graphitic carbon nitride nanosheet (B/g-C2N) as a photocatalyst for nitrogen fixation: A first-principles study
Hao-Ran Zhu(祝浩然), Jia-Liang Chen(陈嘉亮), and Shi-Hao Wei(韦世豪). Chin. Phys. B, 2021, 30(8): 083101.
[15] High-throughput identification of one-dimensional atomic wires and first principles calculations of their electronic states
Feng Lu(卢峰), Jintao Cui(崔锦韬), Pan Liu(刘盼), Meichen Lin(林玫辰), Yahui Cheng(程雅慧), Hui Liu(刘晖), Weichao Wang(王卫超), Kyeongjae Cho, and Wei-Hua Wang(王维华). Chin. Phys. B, 2021, 30(5): 057304.
No Suggested Reading articles found!