ELECTROMAGNETISM, OPTICS, ACOUSTICS, HEAT TRANSFER, CLASSICAL MECHANICS, AND FLUID DYNAMICS |
Prev
Next
|
|
|
Pulse generation of erbium-doped fiber laser based on liquid-exfoliated FePS3 |
Qing Yin(阴晴)1,3, Jin Wang(汪进)2, Xin-Yao Shi(史鑫尧)3, Tao Wang(王涛)2, Jie Yang(杨洁)3, Xin-Xin Zhao(赵新新)3, Zhen-Jiang Shen(沈振江)4, Jian Wu(吴坚)2, Kai Zhang(张凯)3, Pu Zhou(周朴)2, Zong-Fu Jiang(姜宗福)2 |
1 Nano Science and Technology Institute, University of Science and Technology of China, Suzhou 215123, China;
2 College of Advanced Interdisciplinary Studies, National University of Defense Technology, Changsha 410073, China;
3 i-Lab, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou 215123, China;
4 College of Physics and Electronic Engineering, Hainan Normal University, Haikou 571158, China |
|
|
Abstract As a preferable material in the field of photo-detection and catalysis, the characteristics of FePS3 in broad wavelength range have been proven by many experimental studies. However, FePS3 has not been used as a saturable absorber (SA) in fiber lasers yet. We propose and demonstrate the generation of a single wavelength and dual-wavelength based on an Er-doped fiber laser (EDFL) at 1.5 μm by using an innovative FePS3 saturable absorber for the first time. The result shows that a stable passively Q-switched pulse can be generated, which demonstrates that the new two-dimensional (2D) material FePS3 served as SA provides a valid method to realize passively Q-switched laser. In addition, we achieve the output of the dual-wavelength pulse by properly rotating the polarization controller. To the best of our knowledge, the dual-wavelength pulse EDFL could be applied in biomedicine, spectroscopy, and sensing research.
|
Received: 02 April 2019
Revised: 01 May 2019
Accepted manuscript online:
|
PACS:
|
42.55.Wd
|
(Fiber lasers)
|
|
42.60.Gd
|
(Q-switching)
|
|
78.67.-n
|
(Optical properties of low-dimensional, mesoscopic, and nanoscale materials and structures)
|
|
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 61875223 and 11574349), the Natural Science Foundation of Hunan Province, China (Grant No. 2018JJ3610), the Natural Science Foundation of Jiangsu Province, China (Grant Nos. BK20150365 and BK20170424), and the Natural Science Foundation of Hainan Province, China (Grant No. 117111). |
Corresponding Authors:
Jian Wu, Kai Zhang
E-mail: wujian15203@163.com;kzhang2015@sinano.ac.cn
|
Cite this article:
Qing Yin(阴晴), Jin Wang(汪进), Xin-Yao Shi(史鑫尧), Tao Wang(王涛), Jie Yang(杨洁), Xin-Xin Zhao(赵新新), Zhen-Jiang Shen(沈振江), Jian Wu(吴坚), Kai Zhang(张凯), Pu Zhou(周朴), Zong-Fu Jiang(姜宗福) Pulse generation of erbium-doped fiber laser based on liquid-exfoliated FePS3 2019 Chin. Phys. B 28 084208
|
[40] |
Pei Q, Wang X, Zou J and Mi W 2018 J. Mater. Chem. C 6 8092
|
[1] |
Fermann M E and Hartl I 2013 Nat. Photon. 7 868
|
[41] |
Ahmad H, Ruslan N E, Ali Z A, Reduan S A, Lee C S J, Shaharuddin R A, Nayan N and Ismail M A 2016 Opt. Commun. 381 85
|
[2] |
Gillen R and Maultzsch J 2017 IEEE J. Sel. Top. Quantum Electron. 23 1
|
[42] |
Hu Q, Li P, Zhang B, Liu B, Wang L and Chen X 2018 Appl. Opt. 57 8242
|
[3] |
Yu S, Wu X, Wang Y, Guo X and Tong L 2017 Adv. Mater. 29 1606128
|
[43] |
Long G, Zhang T, Cai X, Hu J, Cho C W, Xu S, Shen J, Wu Z, Han T, Lin J, Wang J, Cai Y, Lortz R, Mao Z and Wang N 2017 ACS Nano 11 11330
|
[4] |
Zhang H, He J, Wang Z, Hou J, Zhang B, Zhao R, Han K, Yang K, Nie H and Sun X 2016 Opt. Mater. Express 6 2328
|
[44] |
Wang X, Du K, Liu Y Y F, Hu P, Zhang J, Zhang Q, Owen M H S, Lu X, Gan C K, Sengupta P, Kloc C and Xiong Q 2016 2D Mater. 3 031009
|
[5] |
Mao D, Li M, Cui X, Zhang W, Lu H, Song K and Zhao J 2018 Opt. Commun. 406 254
|
[45] |
Zhang H N and Liu J 2016 Opt. Lett. 41 1150
|
[6] |
Xie Y, Kong L, Qin Z, Xie G and Zhang J 2016 Opt. Eng. 55 4
|
[46] |
Su Y L, Huang X N, Hu H, Wen Y, Xie X P, Si J H, Wang Y S and Zhao W 2019 Laser Phys. 29 065101 5
|
[7] |
Sotor J, Sobon G, Kowalczyk M, Macherzynski W, Paletko P and Abramski K M 2015 Opt. Lett. 40 3885
|
[8] |
Wang F 2017 Chin. Phys. B 26 034202
|
[9] |
Liu W J, Liu M L, Liu B, Quhe R G, Lei M, Fang S B, Teng H and Wei Z Y 2019 Opt. Express 27 6689
|
[10] |
Liu W J, Liu M L, OuYang Y, Hou H R, Lei M and Wei Z Y 2018 Nanotechnology 29 394002 6
|
[11] |
Shahzad F, Alhabeb M, Hatter C B, Anasori B, Man Hong S, Koo C M and Gogotsi Y 2016 Science 353 1137
|
[12] |
Naguib M, Mochalin V N, Barsoum M W and Gogotsi Y 2014 Adv. Mater. 26 992
|
[13] |
Wang C, Peng Q Q, Fan X W, Liang W Y, Zhang F, Liu J and Zhang H 2018 Chin. Phys. B 27 094214
|
[14] |
Lee J and Lee J H 2018 Chin. Phys. B 27 094219
|
[15] |
Tang Y, Wright L G, Charan K, Wang T, Xu C and Wise F W 2016 Optica 3 948
|
[16] |
Wang Y, Xie G, Xu X, Di J, Qin Z, Suomalainen S, Guina M, Härkönen A, Agnesi A, Griebner U, Mateos X, Loiko P and Petrov V 2016 Opt. Mater. Express 6 131
|
[17] |
Soref R 2015 Nat. Photon. 9 358
|
[18] |
Rudy C W, Digonnet M J F and Byer R L 2014 Opt. Fiber Technol. 20 642
|
[19] |
Geng J, Wang Q, Lee Y and Jiang S 2014 IEEE J. Sel. Top. Quantum Electron. 20 150
|
[20] |
Bao Q L, Zhang H, Yang J X, Wang S, Tong D Y, Jose R, Ramakrishna S, Lim C T and Loh K P 2010 Adv. Funct. Mater. 20 782
|
[21] |
Martinez A and Sun Z 2013 Nat. Photon. 7 842
|
[22] |
Tuo M, Xu C, Mu H, Bao X, Wang Y, Xiao S, Ma W, Li L, Tang D, Zhang H, Premaratne M, Sun B, Cheng H M, Li S, Ren W and Bao Q 2018 ACS Photon. 5 1808
|
[23] |
Kadir N A A, Ismail E I, Latiff A A, Ahmad H, Arof H and Harun S W 2017 Chin. Phys. Lett. 34 014202
|
[24] |
Chen Y, Jiang G, Chen S, Guo Z, Yu X, Zhao C, Zhang H, Bao Q, Wen S, Tang D and Fan D 2015 Opt. Express 23 12823
|
[25] |
Gao L, Xu J Y, Zhu Z Y, Hu C X, Zhang L, Wang Q and Zhang H L 2016 Nanoscale 8 15132
|
[26] |
Ren Y, Qin Z, Xie G, Qiao Z, Ma J, Yuan P, Qian L, Wang S, Yu C and Hu L 2018 Int. J. Opt. 2018 8060415 6
|
[27] |
Wang X T, Cui Y, Li T, Lei M, Li J B and Wei Z M 2019 Adv. Opt. Mater. 7 1801274 17
|
[28] |
Luo Z C, Liu M, Luo A P and Xu W C 2018 Chin. Phys. B 27 094215
|
[29] |
Zhu W, Gan W, Muhammad Z, Wang C, Wu C, Liu H, Liu D, Zhang K, He Q, Jiang H, Zheng X, Sun Z, Chen S and Song L 2018 Chem. Commun. 54 4481
|
[30] |
Mayorga-Martinez C C, Sofer Z, Sedmidubsky D, Huber S, Eng A Y S and Pumera M 2017 ACS Appl. Mater. Interfaces 9 12563
|
[31] |
Hu J, Zhang C, Meng X, Lin H, Hu C, Long X and Yang S 2017 J. Mater. Chem. A 5 5995
|
[32] |
Du K Z, Wang X Z, Liu Y, Hu P, Utama M I B, Gan C K, Xiong Q and Kloc C 2016 ACS Nano 10 1738
|
[33] |
Liu M, Tang R, Luo A P, Xu W C and Luo Z C 2018 Photon. Res. 6 C1
|
[34] |
Fuentealba P, Cortes C, Manzur J, Paredes-Garcia V, Venegas-Yazigi D, Silva I D A, de Santana R C, Magon C J and Spodine E 2017 Dalton Trans. 46 14373
|
[35] |
Fuentealba P, Paredes-Garcia V, Venegas-Yazigi D, Silva I D A, Magon C J, de Santana R C, Audebr, N, Manzur J and Spodine E 2017 RCS Adv. 7 33305
|
[36] |
Dangol R, Dai Z, Chaturvedi A, Zheng Y, Zhang Y, Khang Ngoc D, Li B, Zong Y and Yan Q 2018 Nanoscale 10 4890
|
[37] |
Xiang H, Xu B, Xia Y, Yin J and Liu Z 2016 Rsc Adv. 6 89901
|
[38] |
Danovich M, Aleiner I L, Drummond N D and Fal'ko V I 2017 IEEE J. Sel. Top. Quantum Electron. 23 1
|
[39] |
Zhong L, Chen X and Qi J 2017 Phys. Chem. Chem. Phys. 19 15388
|
[40] |
Pei Q, Wang X, Zou J and Mi W 2018 J. Mater. Chem. C 6 8092
|
[41] |
Ahmad H, Ruslan N E, Ali Z A, Reduan S A, Lee C S J, Shaharuddin R A, Nayan N and Ismail M A 2016 Opt. Commun. 381 85
|
[42] |
Hu Q, Li P, Zhang B, Liu B, Wang L and Chen X 2018 Appl. Opt. 57 8242
|
[43] |
Long G, Zhang T, Cai X, Hu J, Cho C W, Xu S, Shen J, Wu Z, Han T, Lin J, Wang J, Cai Y, Lortz R, Mao Z and Wang N 2017 ACS Nano 11 11330
|
[44] |
Wang X, Du K, Liu Y Y F, Hu P, Zhang J, Zhang Q, Owen M H S, Lu X, Gan C K, Sengupta P, Kloc C and Xiong Q 2016 2D Mater. 3 031009
|
[45] |
Zhang H N and Liu J 2016 Opt. Lett. 41 1150
|
[46] |
Su Y L, Huang X N, Hu H, Wen Y, Xie X P, Si J H, Wang Y S and Zhao W 2019 Laser Phys. 29 065101 5
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|