Please wait a minute...
Chin. Phys. B, 2019, Vol. 28(8): 084208    DOI: 10.1088/1674-1056/28/8/084208
ELECTROMAGNETISM, OPTICS, ACOUSTICS, HEAT TRANSFER, CLASSICAL MECHANICS, AND FLUID DYNAMICS Prev   Next  

Pulse generation of erbium-doped fiber laser based on liquid-exfoliated FePS3

Qing Yin(阴晴)1,3, Jin Wang(汪进)2, Xin-Yao Shi(史鑫尧)3, Tao Wang(王涛)2, Jie Yang(杨洁)3, Xin-Xin Zhao(赵新新)3, Zhen-Jiang Shen(沈振江)4, Jian Wu(吴坚)2, Kai Zhang(张凯)3, Pu Zhou(周朴)2, Zong-Fu Jiang(姜宗福)2
1 Nano Science and Technology Institute, University of Science and Technology of China, Suzhou 215123, China;
2 College of Advanced Interdisciplinary Studies, National University of Defense Technology, Changsha 410073, China;
3 i-Lab, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou 215123, China;
4 College of Physics and Electronic Engineering, Hainan Normal University, Haikou 571158, China
Abstract  

As a preferable material in the field of photo-detection and catalysis, the characteristics of FePS3 in broad wavelength range have been proven by many experimental studies. However, FePS3 has not been used as a saturable absorber (SA) in fiber lasers yet. We propose and demonstrate the generation of a single wavelength and dual-wavelength based on an Er-doped fiber laser (EDFL) at 1.5 μm by using an innovative FePS3 saturable absorber for the first time. The result shows that a stable passively Q-switched pulse can be generated, which demonstrates that the new two-dimensional (2D) material FePS3 served as SA provides a valid method to realize passively Q-switched laser. In addition, we achieve the output of the dual-wavelength pulse by properly rotating the polarization controller. To the best of our knowledge, the dual-wavelength pulse EDFL could be applied in biomedicine, spectroscopy, and sensing research.

Keywords:  fiber laser      Q-switched      FePS3}  
Received:  02 April 2019      Revised:  01 May 2019      Accepted manuscript online: 
PACS:  42.55.Wd (Fiber lasers)  
  42.60.Gd (Q-switching)  
  78.67.-n (Optical properties of low-dimensional, mesoscopic, and nanoscale materials and structures)  
Fund: 

Project supported by the National Natural Science Foundation of China (Grant Nos. 61875223 and 11574349), the Natural Science Foundation of Hunan Province, China (Grant No. 2018JJ3610), the Natural Science Foundation of Jiangsu Province, China (Grant Nos. BK20150365 and BK20170424), and the Natural Science Foundation of Hainan Province, China (Grant No. 117111).

Corresponding Authors:  Jian Wu, Kai Zhang     E-mail:  wujian15203@163.com;kzhang2015@sinano.ac.cn

Cite this article: 

Qing Yin(阴晴), Jin Wang(汪进), Xin-Yao Shi(史鑫尧), Tao Wang(王涛), Jie Yang(杨洁), Xin-Xin Zhao(赵新新), Zhen-Jiang Shen(沈振江), Jian Wu(吴坚), Kai Zhang(张凯), Pu Zhou(周朴), Zong-Fu Jiang(姜宗福) Pulse generation of erbium-doped fiber laser based on liquid-exfoliated FePS3 2019 Chin. Phys. B 28 084208

[40] Pei Q, Wang X, Zou J and Mi W 2018 J. Mater. Chem. C 6 8092
[1] Fermann M E and Hartl I 2013 Nat. Photon. 7 868
[41] Ahmad H, Ruslan N E, Ali Z A, Reduan S A, Lee C S J, Shaharuddin R A, Nayan N and Ismail M A 2016 Opt. Commun. 381 85
[2] Gillen R and Maultzsch J 2017 IEEE J. Sel. Top. Quantum Electron. 23 1
[42] Hu Q, Li P, Zhang B, Liu B, Wang L and Chen X 2018 Appl. Opt. 57 8242
[3] Yu S, Wu X, Wang Y, Guo X and Tong L 2017 Adv. Mater. 29 1606128
[43] Long G, Zhang T, Cai X, Hu J, Cho C W, Xu S, Shen J, Wu Z, Han T, Lin J, Wang J, Cai Y, Lortz R, Mao Z and Wang N 2017 ACS Nano 11 11330
[4] Zhang H, He J, Wang Z, Hou J, Zhang B, Zhao R, Han K, Yang K, Nie H and Sun X 2016 Opt. Mater. Express 6 2328
[44] Wang X, Du K, Liu Y Y F, Hu P, Zhang J, Zhang Q, Owen M H S, Lu X, Gan C K, Sengupta P, Kloc C and Xiong Q 2016 2D Mater. 3 031009
[5] Mao D, Li M, Cui X, Zhang W, Lu H, Song K and Zhao J 2018 Opt. Commun. 406 254
[45] Zhang H N and Liu J 2016 Opt. Lett. 41 1150
[6] Xie Y, Kong L, Qin Z, Xie G and Zhang J 2016 Opt. Eng. 55 4
[46] Su Y L, Huang X N, Hu H, Wen Y, Xie X P, Si J H, Wang Y S and Zhao W 2019 Laser Phys. 29 065101 5
[7] Sotor J, Sobon G, Kowalczyk M, Macherzynski W, Paletko P and Abramski K M 2015 Opt. Lett. 40 3885
[8] Wang F 2017 Chin. Phys. B 26 034202
[9] Liu W J, Liu M L, Liu B, Quhe R G, Lei M, Fang S B, Teng H and Wei Z Y 2019 Opt. Express 27 6689
[10] Liu W J, Liu M L, OuYang Y, Hou H R, Lei M and Wei Z Y 2018 Nanotechnology 29 394002 6
[11] Shahzad F, Alhabeb M, Hatter C B, Anasori B, Man Hong S, Koo C M and Gogotsi Y 2016 Science 353 1137
[12] Naguib M, Mochalin V N, Barsoum M W and Gogotsi Y 2014 Adv. Mater. 26 992
[13] Wang C, Peng Q Q, Fan X W, Liang W Y, Zhang F, Liu J and Zhang H 2018 Chin. Phys. B 27 094214
[14] Lee J and Lee J H 2018 Chin. Phys. B 27 094219
[15] Tang Y, Wright L G, Charan K, Wang T, Xu C and Wise F W 2016 Optica 3 948
[16] Wang Y, Xie G, Xu X, Di J, Qin Z, Suomalainen S, Guina M, Härkönen A, Agnesi A, Griebner U, Mateos X, Loiko P and Petrov V 2016 Opt. Mater. Express 6 131
[17] Soref R 2015 Nat. Photon. 9 358
[18] Rudy C W, Digonnet M J F and Byer R L 2014 Opt. Fiber Technol. 20 642
[19] Geng J, Wang Q, Lee Y and Jiang S 2014 IEEE J. Sel. Top. Quantum Electron. 20 150
[20] Bao Q L, Zhang H, Yang J X, Wang S, Tong D Y, Jose R, Ramakrishna S, Lim C T and Loh K P 2010 Adv. Funct. Mater. 20 782
[21] Martinez A and Sun Z 2013 Nat. Photon. 7 842
[22] Tuo M, Xu C, Mu H, Bao X, Wang Y, Xiao S, Ma W, Li L, Tang D, Zhang H, Premaratne M, Sun B, Cheng H M, Li S, Ren W and Bao Q 2018 ACS Photon. 5 1808
[23] Kadir N A A, Ismail E I, Latiff A A, Ahmad H, Arof H and Harun S W 2017 Chin. Phys. Lett. 34 014202
[24] Chen Y, Jiang G, Chen S, Guo Z, Yu X, Zhao C, Zhang H, Bao Q, Wen S, Tang D and Fan D 2015 Opt. Express 23 12823
[25] Gao L, Xu J Y, Zhu Z Y, Hu C X, Zhang L, Wang Q and Zhang H L 2016 Nanoscale 8 15132
[26] Ren Y, Qin Z, Xie G, Qiao Z, Ma J, Yuan P, Qian L, Wang S, Yu C and Hu L 2018 Int. J. Opt. 2018 8060415 6
[27] Wang X T, Cui Y, Li T, Lei M, Li J B and Wei Z M 2019 Adv. Opt. Mater. 7 1801274 17
[28] Luo Z C, Liu M, Luo A P and Xu W C 2018 Chin. Phys. B 27 094215
[29] Zhu W, Gan W, Muhammad Z, Wang C, Wu C, Liu H, Liu D, Zhang K, He Q, Jiang H, Zheng X, Sun Z, Chen S and Song L 2018 Chem. Commun. 54 4481
[30] Mayorga-Martinez C C, Sofer Z, Sedmidubsky D, Huber S, Eng A Y S and Pumera M 2017 ACS Appl. Mater. Interfaces 9 12563
[31] Hu J, Zhang C, Meng X, Lin H, Hu C, Long X and Yang S 2017 J. Mater. Chem. A 5 5995
[32] Du K Z, Wang X Z, Liu Y, Hu P, Utama M I B, Gan C K, Xiong Q and Kloc C 2016 ACS Nano 10 1738
[33] Liu M, Tang R, Luo A P, Xu W C and Luo Z C 2018 Photon. Res. 6 C1
[34] Fuentealba P, Cortes C, Manzur J, Paredes-Garcia V, Venegas-Yazigi D, Silva I D A, de Santana R C, Magon C J and Spodine E 2017 Dalton Trans. 46 14373
[35] Fuentealba P, Paredes-Garcia V, Venegas-Yazigi D, Silva I D A, Magon C J, de Santana R C, Audebr, N, Manzur J and Spodine E 2017 RCS Adv. 7 33305
[36] Dangol R, Dai Z, Chaturvedi A, Zheng Y, Zhang Y, Khang Ngoc D, Li B, Zong Y and Yan Q 2018 Nanoscale 10 4890
[37] Xiang H, Xu B, Xia Y, Yin J and Liu Z 2016 Rsc Adv. 6 89901
[38] Danovich M, Aleiner I L, Drummond N D and Fal'ko V I 2017 IEEE J. Sel. Top. Quantum Electron. 23 1
[39] Zhong L, Chen X and Qi J 2017 Phys. Chem. Chem. Phys. 19 15388
[40] Pei Q, Wang X, Zou J and Mi W 2018 J. Mater. Chem. C 6 8092
[41] Ahmad H, Ruslan N E, Ali Z A, Reduan S A, Lee C S J, Shaharuddin R A, Nayan N and Ismail M A 2016 Opt. Commun. 381 85
[42] Hu Q, Li P, Zhang B, Liu B, Wang L and Chen X 2018 Appl. Opt. 57 8242
[43] Long G, Zhang T, Cai X, Hu J, Cho C W, Xu S, Shen J, Wu Z, Han T, Lin J, Wang J, Cai Y, Lortz R, Mao Z and Wang N 2017 ACS Nano 11 11330
[44] Wang X, Du K, Liu Y Y F, Hu P, Zhang J, Zhang Q, Owen M H S, Lu X, Gan C K, Sengupta P, Kloc C and Xiong Q 2016 2D Mater. 3 031009
[45] Zhang H N and Liu J 2016 Opt. Lett. 41 1150
[46] Su Y L, Huang X N, Hu H, Wen Y, Xie X P, Si J H, Wang Y S and Zhao W 2019 Laser Phys. 29 065101 5
[1] A kind of multiwavelength erbium-doped fiber laser based on Lyot filter
Zhehai Zhou(周哲海), Jingyi Wu(吴婧仪), Kunlong Min(闵昆龙), Shuang Zhao(赵爽), and Huiyu Li(李慧宇). Chin. Phys. B, 2023, 32(3): 034205.
[2] Real-time observation of soliton pulsation in net normal-dispersion dissipative soliton fiber laser
Xu-De Wang(汪徐德), Xu Geng(耿旭), Jie-Yu Pan(潘婕妤), Meng-Qiu Sun(孙梦秋), Meng-Xiang Lu(陆梦想), Kai-Xin Li(李凯芯), and Su-Wen Li(李素文). Chin. Phys. B, 2023, 32(2): 024210.
[3] Precise determination of characteristic laser frequencies by an Er-doped fiber optical frequency comb
Shiying Cao(曹士英), Yi Han(韩羿), Yongjin Ding(丁永今), Baike Lin(林百科), and Zhanjun Fang(方占军). Chin. Phys. B, 2022, 31(7): 074207.
[4] Sequential generation of self-starting diverse operations in all-fiber laser based on thulium-doped fiber saturable absorber
Pei Zhang(张沛), Kaharudin Dimyati, Bilal Nizamani, Mustafa M. Najm, and S. W. Harun. Chin. Phys. B, 2022, 31(6): 064204.
[5] Single-frequency distributed Bragg reflector Tm:YAG ceramic derived all-glass fiber laser at 1.95 μm
Guo-Quan Qian(钱国权), Min-Bo Wu(吴敏波), Guo-Wu Tang(唐国武), Min Sun(孙敏),Dong-Dan Chen(陈东丹), Zhi-Bin Zhang(张志斌), Hui Luo(罗辉), and Qi Qian(钱奇). Chin. Phys. B, 2022, 31(12): 124205.
[6] Spatiotemporal mode-locked multimode fiber laser with dissipative four-wave mixing effect
Ming-Wei Qiu(邱明伟), Chao-Qun Cai(蔡超群), and Zu-Xing Zhang(张祖兴). Chin. Phys. B, 2022, 31(10): 104207.
[7] A low-threshold multiwavelength Brillouin fiber laser with double-frequency spacing based on a small-core fiber
Lu-Lu Xu(徐路路), Ying-Ying Wang(王莹莹), Li Jiang(江丽), Pei-Long Yang(杨佩龙), Lei Zhang(张磊), and Shi-Xun Dai(戴世勋). Chin. Phys. B, 2021, 30(8): 084210.
[8] Generation of multi-wavelength square pulses in the dissipative soliton resonance regime by a Yb-doped fiber laser
Xude Wang(汪徐德), Simin Yang(杨思敏), Mengqiu Sun(孙梦秋), Xu Geng(耿旭), Jieyu Pan (潘婕妤), Shuguang Miao(苗曙光), and Suwen Li(李素文). Chin. Phys. B, 2021, 30(6): 064212.
[9] Zinc-oxide/PDMS-clad tapered fiber saturable absorber for passively mode-locked erbium-doped fiber laser
F D Muhammad, S A S Husin, E K Ng, K Y Lau, C A C Abdullah, and M A Mahdi. Chin. Phys. B, 2021, 30(5): 054204.
[10] Generation of cavity-birefringence-dependent multi-wavelength bright-dark pulse pair in a figure-eight thulium-doped fiber laser
Xiao-Fa Wang(王小发), Dong-Xin Liu(刘东鑫), Hui-Hui Han(韩慧慧), and Hong-Yang Mao(毛红炀). Chin. Phys. B, 2021, 30(5): 054205.
[11] Efficient loading of ultracold sodium atoms in an optical dipole trap from a high power fiber laser
Jing Xu(徐静), Wen-Liang Liu(刘文良), Ning-Xuan Zheng(郑宁宣), Yu-Qing Li(李玉清), Ji-Zhou Wu(武寄洲), Peng Li (李鹏), Yong-Ming Fu(付永明), Jie Ma(马杰), Lian-Tuan Xiao(肖连团), and Suo-Tang Jia(贾锁堂). Chin. Phys. B, 2021, 30(3): 033701.
[12] Brillouin gain spectrum characterization in Ge-doped large-mode-area fibers
Xia-Xia Niu(牛夏夏), Yi-Feng Yang(杨依枫), Zhao Quan(全昭), Chun-Lei Yu(于春雷), Qin-Ling Zhou(周秦岭), Hui Shen(沈辉), Bing He(何兵), and Jun Zhou(周军). Chin. Phys. B, 2021, 30(12): 124203.
[13] Generation of domain-wall solitons in an anomalous dispersion fiber ring laser
Wen-Yan Zhang(张文艳), Kun Yang(杨坤), Li-Jie Geng(耿利杰), Nan-Nan Liu(刘楠楠), Yun-Qi Hao(郝蕴琦), Tian-Hao Xian(贤天浩), and Li Zhan(詹黎). Chin. Phys. B, 2021, 30(11): 114212.
[14] Optomechanical-organized multipulse dynamics in ultrafast fiber laser
Lin Huang(黄琳), Yu-Sheng Zhang(张裕生), and Yu-Dong Cui(崔玉栋). Chin. Phys. B, 2021, 30(11): 114203.
[15] Suppression of multi-pulse formation in all-polarization-maintaining figure-9 erbium-doped fiber mode-locked laser
Jun-Kai Shi(石俊凯), Deng-Feng Dong(董登峰), Ying-Ling Pan(潘映伶), Guan-Nan Li(李冠楠), Yao Li(黎尧), Li-Tuo Liu(刘立拓), Xiao-Mei Chen(陈晓梅), and Wei-Hu Zhou(周维虎). Chin. Phys. B, 2021, 30(1): 014206.
No Suggested Reading articles found!