Please wait a minute...
Chin. Phys. B, 2019, Vol. 28(8): 084207    DOI: 10.1088/1674-1056/28/8/084207
ELECTROMAGNETISM, OPTICS, ACOUSTICS, HEAT TRANSFER, CLASSICAL MECHANICS, AND FLUID DYNAMICS Prev   Next  

Zinc-oxide nanoparticle-based saturable absorber deposited by simple evaporation technique for Q-switched fiber laser

Syarifah Aloyah Syed Husin1, Farah Diana Muhammad1, Che Azurahanim Che Abdullah1, Siti Huzaimah Ribut1, Mohd Zamani Zulkifli2,3, Mohd Adzir Mahdi4
1 Department of Physics, Faculty of Science, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia;
2 Photonics Research Centre, Department of Physics, University of Malaya, 50603 Kuala Lumpur, Malaysia;
3 Kulliyyah of Science, International Islamic University of Malaysia, Jalan Sultan Ahmad Shah, Bandar Indera Mahkota, 25200 Kuantan, Pahang, Malaysia;
4 Wireless and Photonics Networks Research Centre, Faculty of Engineering, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia
Abstract  A Q-switched erbium-doped fiber laser (EDFL) incorporating zinc-oxide (ZnO) nanoparticles-based saturable absorber (SA) is proposed and demonstrated. To form the SA, the ZnO nanoparticles, which are originally in the powder form, are first dissolved in ethanol and subsequently deposited onto the surface of fiber ferrule by using the adhesion effect with the evaporation technique. By integrating the ZnO nanoparticle-based SA into a laser cavity of an EDFL, a self-started and stable Q-switching is achieved at a low threshold power of 20.24 mW. As the pump power is increased, the pulse repetition rate is tunable from 10.34 kHz to 25.59 kHz while pulse duration decreases from 21.39 μs to 3.65 μs. Additionally, this Q-switched laser has a maximum energy per pulse of 19.34 nJ and an average output power of 0.46 mW. These results indicate the feasibility and functionality of the ZnO nanoparticles-based SA for Q-switched generation, which offers the flexibility and easy integration of the SA into a ring laser cavity.
Keywords:  zinc oxide      saturable absorber      Q-switched      fiber laser  
Received:  25 February 2019      Revised:  24 May 2019      Accepted manuscript online: 
PACS:  42.55.Wd (Fiber lasers)  
  42.60.Gd (Q-switching)  
  42.81.-i (Fiber optics)  
Fund: Project supported by the Science Fund from the Ministry of Higher Education of Malaysia (MOHE) (Grant No. FRGS/1/2016/STG02/UPM/02/5).
Corresponding Authors:  Farah Diana Muhammad     E-mail:  farahdiana@upm.edu.my

Cite this article: 

Syarifah Aloyah Syed Husin, Farah Diana Muhammad, Che Azurahanim Che Abdullah, Siti Huzaimah Ribut, Mohd Zamani Zulkifli, Mohd Adzir Mahdi Zinc-oxide nanoparticle-based saturable absorber deposited by simple evaporation technique for Q-switched fiber laser 2019 Chin. Phys. B 28 084207

[39] Johnson J C, Knutsen K P, Yan H, Law M, Zhang Y, Yang P and Saykally R J 2004 Nano Lett. 4 197
[1] Ahmad H, Lee C S J, Ismail M A, Ali Z A, Reduan S A Ruslan N E Ismail M F and Harun S W 2016 Opt. Commun. 381 72
[40] Janotti A and Van de Walle C G 2009 Rep. Prog. Phys. 72 126501
[2] Popa D, Sun Z, Hasan T, Torrisi F, Wang F and Ferrari A C 2011 Appl. Phys. Lett. 98 073106
[41] Aziz N A, Latiff A A, Lokman M Q, Hanafi E and Harun S W 2017 Chin. Phys. Lett. 34 044202
[3] Keller U 2003 Nature 424 831
[42] Lin J H, Chen Y J, Lin H Y and Hsieh W F 2005 J. Appl. Phys. 97 033526
[43] Petrov G I, Shcheslavskiy V, Yakovlev V V, Ozerov I, Chelnokov E and Marine W 2003 Appl. Phys. Lett. 83 3993
[4] Ramaswami R and Sivarajan K 1998 Optical Networks: A Practical Perspective (Massachusetts: Morgan Kaufmann) Chap. 1
[44] Khan A 2010 J. Pak. Mater. Soc. 4 5
[5] Mollenauer L F, Mamyshev P V, Gripp J, Neubelt M J, Mamysheva N, Grüner-Nielsen L and Veng T 2000 Opt. Lett. 25 704
[6] Miller D A B 2000 IEEE J. Sel. Top. Quantum Electron. 6 1312
[45] Zhang R, Yin P G, Wang N and Guo L 2009 Solid State Sci. 11 865
[7] Hammer D X, Thomas R J, Noojin G D, Rockwell B A, Kennedy P K and Roach W P 1996 IEEE J. Quantum Electron. 32 670
[46] Ashkenov N and Mbenkum B N 2003 J. Appl. Phys. 93 126
[8] Gitomer S J and Jones R D 1991 IEEE T. Plasma Sci. 19 1209
[47] Ahmad H, Muhammad F D, Zulkifli M Z and Harun S W 2012 IEEE Photon. J. 4 2205
[9] Nordstrom R 1993 Lasers & Optronics 23
[48] Ahmad H, Reduan S A, Ali Z A, Ismail M A, Ruslan N E, Lee C S J, Puteh R and Harun S W 2016 IEEE Photon. J. 8 1500107
[10] Cain C P, Toth C A, DiCarlo C D, Stein C D, Noojin G D, Stolarski D J and Roach W P 1995 Invest. Ophthalmol. Vis. Sci. 36 879
[49] Siddiq N A, Chong W Y, Yap Y K, Pramono Y H and Ahmad H 2018 Laser Phys. 28 125104
[50] Nady A, Ahmed M H M, Numan A, Ramesh S, Latiff A A, Ooi C H R, Arof H and Harun S W 2017 J. Mod. Opt. 64 1315
[11] Juhasz T, Loesel F H, Kurtz R M, Horvath C, Bille J F and Mourou G 1999 IEEE J. Sel. Top. Quantum Electron. 5 902
[51] Huang Y, Luo Z, Li Y, Zhong M, Xu B, Che K, Xu H, Cai Z, Peng J and Weng J 2014 Opt. Express 22 25258
[12] Loesel F H, Fischer J P, Gõtz M H, Horvath C, Juhasz T, Noack F, Suhm N and Bille J F 1998 Appl. Phys. B 66 121
[52] Lau K Y, Latif A A, Abu Bakar M H, Muhammad F D, Omar M F and Mahdi M A 2017 Appl. Phys. B 123 221
[13] Paschotta R, Hãring R, Gini E, Melchior H, Keller U, Offerhaus H L and Richardson D J 1999 Opt. Lett. 24 388
[14] Li H, Xia H, Lan C, Li C, Zhang X, Li J and Liu Y 2015 IEEE Photon. Technol. Lett. 27 69
[15] Ahmad H, Salim M A M, Ismail M F and Harun S W 2016 Laser Phys. 26 115107
[16] Okhotnikov O, Grudinin A and Pessa M 2004 New J. Phys. 6 177
[17] Ahmad H, Lee C S J, Ismail M A, Ali Z A, Reduan S A, Ruslan N E and Harun S W 2016 Appl. Opt. 55 4277
[18] Yin K, Jiang T, Yu H, Zheng X, Cheng X and Hou J 2015 arXiv: 1505.06322
[19] Wang J 2015 Proceedings of SPIE OPTO, Optical Components and Materials XⅡ (San Francisco, California, USA) Vol. 9359, p. 935902
[20] Buscema M, Groenendijk D J, Blanter S I, Steele G A, Zant H S and Gomez A C 2014 Nano Lett. 14 3347
[21] Zhang M, Hu G, Hu G, Howe R C T, Chen L, Zheng Z and Hasan T 2015 Sci. Rep. 5 1748210
[22] Wang Q H, Kalantar-Zadeh K, Kis A Coleman J N and Strano M S 2012 Nat. Nanotech. 7 699
[23] Bonaccorso F, Sun Z, Hasan T and Ferrari A C 2010 Nat. Photon. 4 611
[24] Hanlon D, Backes C, Doherty E, et al. 2015 Nat. Commun. 6 8563
[25] Sun Z, Popa D, Hasan T, Torrisi F, Wang F, Kelleher E J R, Travers J C, Nicolosi V and Ferrari A C 2010 Nano Research 3 653
[26] Martinez A and Sun Z 2013 Nat. Photon. 7 842
[27] Hsieh D, Qian D, Wray L, Xia Y, Hor Y S, Cava R J and Hasan M Z 2008 Nature 452 970
[28] Zhang H, Liu C, Qi X, Dai X, Fang Z and Zhang Se 2009 Nat. Phys. 5 438
[29] Moore J E 2010 Nature 464 194
[30] Ramakrishna Matte H S S, Gomathi A, Manna A K, Late D J, Datta R, Pati S K and Rao C N R 2010 Angew. Chem. 122 4153
[31] Sadeq S A, Al-Hayali S K, Harun S W and Al-Janabi A 2018 Results in Physics 10 264
[32] Khaleel W A, Sadeq S A, Alani I A M and Ahmed M H M 2019 Opt. Laser Technol. 115 331
[33] Nady A, Ahmed M H M, Latiff A A, Numan A, Ooi C H R and Harun S We 2017 Laser Phys. 27 065105
[34] Jagadish C and Pearton S J 2006 Zinc Oxide Bulk, Thin Films and Nanostructures: Processing, Properties, and Applications (Amsterdam: Elsevier)
[35] Mang A and Reimann K 1995 Solid State Commun. 94 251
[36] Reynolds D C, Look D C and Jogai B 1996 Solid State Commun. 99 873
[37] Bagnall D M, Chen Y F, Zhu Z and Yao T 1997 Appl. Phys. Lett. 70 2230
[38] Wang Z L 2004 J. Phys. Condens. Matter 16 R829
[39] Johnson J C, Knutsen K P, Yan H, Law M, Zhang Y, Yang P and Saykally R J 2004 Nano Lett. 4 197
[40] Janotti A and Van de Walle C G 2009 Rep. Prog. Phys. 72 126501
[41] Aziz N A, Latiff A A, Lokman M Q, Hanafi E and Harun S W 2017 Chin. Phys. Lett. 34 044202
[42] Lin J H, Chen Y J, Lin H Y and Hsieh W F 2005 J. Appl. Phys. 97 033526
[43] Petrov G I, Shcheslavskiy V, Yakovlev V V, Ozerov I, Chelnokov E and Marine W 2003 Appl. Phys. Lett. 83 3993
[44] Khan A 2010 J. Pak. Mater. Soc. 4 5
[45] Zhang R, Yin P G, Wang N and Guo L 2009 Solid State Sci. 11 865
[46] Ashkenov N and Mbenkum B N 2003 J. Appl. Phys. 93 126
[47] Ahmad H, Muhammad F D, Zulkifli M Z and Harun S W 2012 IEEE Photon. J. 4 2205
[48] Ahmad H, Reduan S A, Ali Z A, Ismail M A, Ruslan N E, Lee C S J, Puteh R and Harun S W 2016 IEEE Photon. J. 8 1500107
[49] Siddiq N A, Chong W Y, Yap Y K, Pramono Y H and Ahmad H 2018 Laser Phys. 28 125104
[50] Nady A, Ahmed M H M, Numan A, Ramesh S, Latiff A A, Ooi C H R, Arof H and Harun S W 2017 J. Mod. Opt. 64 1315
[51] Huang Y, Luo Z, Li Y, Zhong M, Xu B, Che K, Xu H, Cai Z, Peng J and Weng J 2014 Opt. Express 22 25258
[52] Lau K Y, Latif A A, Abu Bakar M H, Muhammad F D, Omar M F and Mahdi M A 2017 Appl. Phys. B 123 221
[1] A kind of multiwavelength erbium-doped fiber laser based on Lyot filter
Zhehai Zhou(周哲海), Jingyi Wu(吴婧仪), Kunlong Min(闵昆龙), Shuang Zhao(赵爽), and Huiyu Li(李慧宇). Chin. Phys. B, 2023, 32(3): 034205.
[2] Real-time observation of soliton pulsation in net normal-dispersion dissipative soliton fiber laser
Xu-De Wang(汪徐德), Xu Geng(耿旭), Jie-Yu Pan(潘婕妤), Meng-Qiu Sun(孙梦秋), Meng-Xiang Lu(陆梦想), Kai-Xin Li(李凯芯), and Su-Wen Li(李素文). Chin. Phys. B, 2023, 32(2): 024210.
[3] Precise determination of characteristic laser frequencies by an Er-doped fiber optical frequency comb
Shiying Cao(曹士英), Yi Han(韩羿), Yongjin Ding(丁永今), Baike Lin(林百科), and Zhanjun Fang(方占军). Chin. Phys. B, 2022, 31(7): 074207.
[4] Sequential generation of self-starting diverse operations in all-fiber laser based on thulium-doped fiber saturable absorber
Pei Zhang(张沛), Kaharudin Dimyati, Bilal Nizamani, Mustafa M. Najm, and S. W. Harun. Chin. Phys. B, 2022, 31(6): 064204.
[5] Photoelectrochemical activity of ZnO:Ag/rGO photo-anodes synthesized by two-steps sol-gel method
D Ben Jemia, M Karyaoui, M A Wederni, A Bardaoui, M V Martinez-Huerta, M Amlouk, and R Chtourou. Chin. Phys. B, 2022, 31(5): 058201.
[6] Single-frequency distributed Bragg reflector Tm:YAG ceramic derived all-glass fiber laser at 1.95 μm
Guo-Quan Qian(钱国权), Min-Bo Wu(吴敏波), Guo-Wu Tang(唐国武), Min Sun(孙敏),Dong-Dan Chen(陈东丹), Zhi-Bin Zhang(张志斌), Hui Luo(罗辉), and Qi Qian(钱奇). Chin. Phys. B, 2022, 31(12): 124205.
[7] Spatiotemporal mode-locked multimode fiber laser with dissipative four-wave mixing effect
Ming-Wei Qiu(邱明伟), Chao-Qun Cai(蔡超群), and Zu-Xing Zhang(张祖兴). Chin. Phys. B, 2022, 31(10): 104207.
[8] A low-threshold multiwavelength Brillouin fiber laser with double-frequency spacing based on a small-core fiber
Lu-Lu Xu(徐路路), Ying-Ying Wang(王莹莹), Li Jiang(江丽), Pei-Long Yang(杨佩龙), Lei Zhang(张磊), and Shi-Xun Dai(戴世勋). Chin. Phys. B, 2021, 30(8): 084210.
[9] Generation of multi-wavelength square pulses in the dissipative soliton resonance regime by a Yb-doped fiber laser
Xude Wang(汪徐德), Simin Yang(杨思敏), Mengqiu Sun(孙梦秋), Xu Geng(耿旭), Jieyu Pan (潘婕妤), Shuguang Miao(苗曙光), and Suwen Li(李素文). Chin. Phys. B, 2021, 30(6): 064212.
[10] Zinc-oxide/PDMS-clad tapered fiber saturable absorber for passively mode-locked erbium-doped fiber laser
F D Muhammad, S A S Husin, E K Ng, K Y Lau, C A C Abdullah, and M A Mahdi. Chin. Phys. B, 2021, 30(5): 054204.
[11] Generation of cavity-birefringence-dependent multi-wavelength bright-dark pulse pair in a figure-eight thulium-doped fiber laser
Xiao-Fa Wang(王小发), Dong-Xin Liu(刘东鑫), Hui-Hui Han(韩慧慧), and Hong-Yang Mao(毛红炀). Chin. Phys. B, 2021, 30(5): 054205.
[12] Efficient loading of ultracold sodium atoms in an optical dipole trap from a high power fiber laser
Jing Xu(徐静), Wen-Liang Liu(刘文良), Ning-Xuan Zheng(郑宁宣), Yu-Qing Li(李玉清), Ji-Zhou Wu(武寄洲), Peng Li (李鹏), Yong-Ming Fu(付永明), Jie Ma(马杰), Lian-Tuan Xiao(肖连团), and Suo-Tang Jia(贾锁堂). Chin. Phys. B, 2021, 30(3): 033701.
[13] Brillouin gain spectrum characterization in Ge-doped large-mode-area fibers
Xia-Xia Niu(牛夏夏), Yi-Feng Yang(杨依枫), Zhao Quan(全昭), Chun-Lei Yu(于春雷), Qin-Ling Zhou(周秦岭), Hui Shen(沈辉), Bing He(何兵), and Jun Zhou(周军). Chin. Phys. B, 2021, 30(12): 124203.
[14] Generation of domain-wall solitons in an anomalous dispersion fiber ring laser
Wen-Yan Zhang(张文艳), Kun Yang(杨坤), Li-Jie Geng(耿利杰), Nan-Nan Liu(刘楠楠), Yun-Qi Hao(郝蕴琦), Tian-Hao Xian(贤天浩), and Li Zhan(詹黎). Chin. Phys. B, 2021, 30(11): 114212.
[15] Optomechanical-organized multipulse dynamics in ultrafast fiber laser
Lin Huang(黄琳), Yu-Sheng Zhang(张裕生), and Yu-Dong Cui(崔玉栋). Chin. Phys. B, 2021, 30(11): 114203.
No Suggested Reading articles found!