ELECTROMAGNETISM, OPTICS, ACOUSTICS, HEAT TRANSFER, CLASSICAL MECHANICS, AND FLUID DYNAMICS |
Prev
Next
|
|
|
Zinc-oxide nanoparticle-based saturable absorber deposited by simple evaporation technique for Q-switched fiber laser |
Syarifah Aloyah Syed Husin1, Farah Diana Muhammad1, Che Azurahanim Che Abdullah1, Siti Huzaimah Ribut1, Mohd Zamani Zulkifli2,3, Mohd Adzir Mahdi4 |
1 Department of Physics, Faculty of Science, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia; 2 Photonics Research Centre, Department of Physics, University of Malaya, 50603 Kuala Lumpur, Malaysia; 3 Kulliyyah of Science, International Islamic University of Malaysia, Jalan Sultan Ahmad Shah, Bandar Indera Mahkota, 25200 Kuantan, Pahang, Malaysia; 4 Wireless and Photonics Networks Research Centre, Faculty of Engineering, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia |
|
|
Abstract A Q-switched erbium-doped fiber laser (EDFL) incorporating zinc-oxide (ZnO) nanoparticles-based saturable absorber (SA) is proposed and demonstrated. To form the SA, the ZnO nanoparticles, which are originally in the powder form, are first dissolved in ethanol and subsequently deposited onto the surface of fiber ferrule by using the adhesion effect with the evaporation technique. By integrating the ZnO nanoparticle-based SA into a laser cavity of an EDFL, a self-started and stable Q-switching is achieved at a low threshold power of 20.24 mW. As the pump power is increased, the pulse repetition rate is tunable from 10.34 kHz to 25.59 kHz while pulse duration decreases from 21.39 μs to 3.65 μs. Additionally, this Q-switched laser has a maximum energy per pulse of 19.34 nJ and an average output power of 0.46 mW. These results indicate the feasibility and functionality of the ZnO nanoparticles-based SA for Q-switched generation, which offers the flexibility and easy integration of the SA into a ring laser cavity.
|
Received: 25 February 2019
Revised: 24 May 2019
Accepted manuscript online:
|
|
Fund: Project supported by the Science Fund from the Ministry of Higher Education of Malaysia (MOHE) (Grant No. FRGS/1/2016/STG02/UPM/02/5). |
Corresponding Authors:
Farah Diana Muhammad
E-mail: farahdiana@upm.edu.my
|
Cite this article:
Syarifah Aloyah Syed Husin, Farah Diana Muhammad, Che Azurahanim Che Abdullah, Siti Huzaimah Ribut, Mohd Zamani Zulkifli, Mohd Adzir Mahdi Zinc-oxide nanoparticle-based saturable absorber deposited by simple evaporation technique for Q-switched fiber laser 2019 Chin. Phys. B 28 084207
|
[39] |
Johnson J C, Knutsen K P, Yan H, Law M, Zhang Y, Yang P and Saykally R J 2004 Nano Lett. 4 197
|
[1] |
Ahmad H, Lee C S J, Ismail M A, Ali Z A, Reduan S A Ruslan N E Ismail M F and Harun S W 2016 Opt. Commun. 381 72
|
[40] |
Janotti A and Van de Walle C G 2009 Rep. Prog. Phys. 72 126501
|
[2] |
Popa D, Sun Z, Hasan T, Torrisi F, Wang F and Ferrari A C 2011 Appl. Phys. Lett. 98 073106
|
[41] |
Aziz N A, Latiff A A, Lokman M Q, Hanafi E and Harun S W 2017 Chin. Phys. Lett. 34 044202
|
[3] |
Keller U 2003 Nature 424 831
|
[42] |
Lin J H, Chen Y J, Lin H Y and Hsieh W F 2005 J. Appl. Phys. 97 033526
|
[43] |
Petrov G I, Shcheslavskiy V, Yakovlev V V, Ozerov I, Chelnokov E and Marine W 2003 Appl. Phys. Lett. 83 3993
|
[4] |
Ramaswami R and Sivarajan K 1998 Optical Networks: A Practical Perspective (Massachusetts: Morgan Kaufmann) Chap. 1
|
[44] |
Khan A 2010 J. Pak. Mater. Soc. 4 5
|
[5] |
Mollenauer L F, Mamyshev P V, Gripp J, Neubelt M J, Mamysheva N, Grüner-Nielsen L and Veng T 2000 Opt. Lett. 25 704
|
[6] |
Miller D A B 2000 IEEE J. Sel. Top. Quantum Electron. 6 1312
|
[45] |
Zhang R, Yin P G, Wang N and Guo L 2009 Solid State Sci. 11 865
|
[7] |
Hammer D X, Thomas R J, Noojin G D, Rockwell B A, Kennedy P K and Roach W P 1996 IEEE J. Quantum Electron. 32 670
|
[46] |
Ashkenov N and Mbenkum B N 2003 J. Appl. Phys. 93 126
|
[8] |
Gitomer S J and Jones R D 1991 IEEE T. Plasma Sci. 19 1209
|
[47] |
Ahmad H, Muhammad F D, Zulkifli M Z and Harun S W 2012 IEEE Photon. J. 4 2205
|
[9] |
Nordstrom R 1993 Lasers & Optronics 23
|
[48] |
Ahmad H, Reduan S A, Ali Z A, Ismail M A, Ruslan N E, Lee C S J, Puteh R and Harun S W 2016 IEEE Photon. J. 8 1500107
|
[10] |
Cain C P, Toth C A, DiCarlo C D, Stein C D, Noojin G D, Stolarski D J and Roach W P 1995 Invest. Ophthalmol. Vis. Sci. 36 879
|
[49] |
Siddiq N A, Chong W Y, Yap Y K, Pramono Y H and Ahmad H 2018 Laser Phys. 28 125104
|
[50] |
Nady A, Ahmed M H M, Numan A, Ramesh S, Latiff A A, Ooi C H R, Arof H and Harun S W 2017 J. Mod. Opt. 64 1315
|
[11] |
Juhasz T, Loesel F H, Kurtz R M, Horvath C, Bille J F and Mourou G 1999 IEEE J. Sel. Top. Quantum Electron. 5 902
|
[51] |
Huang Y, Luo Z, Li Y, Zhong M, Xu B, Che K, Xu H, Cai Z, Peng J and Weng J 2014 Opt. Express 22 25258
|
[12] |
Loesel F H, Fischer J P, Gõtz M H, Horvath C, Juhasz T, Noack F, Suhm N and Bille J F 1998 Appl. Phys. B 66 121
|
[52] |
Lau K Y, Latif A A, Abu Bakar M H, Muhammad F D, Omar M F and Mahdi M A 2017 Appl. Phys. B 123 221
|
[13] |
Paschotta R, Hãring R, Gini E, Melchior H, Keller U, Offerhaus H L and Richardson D J 1999 Opt. Lett. 24 388
|
[14] |
Li H, Xia H, Lan C, Li C, Zhang X, Li J and Liu Y 2015 IEEE Photon. Technol. Lett. 27 69
|
[15] |
Ahmad H, Salim M A M, Ismail M F and Harun S W 2016 Laser Phys. 26 115107
|
[16] |
Okhotnikov O, Grudinin A and Pessa M 2004 New J. Phys. 6 177
|
[17] |
Ahmad H, Lee C S J, Ismail M A, Ali Z A, Reduan S A, Ruslan N E and Harun S W 2016 Appl. Opt. 55 4277
|
[18] |
Yin K, Jiang T, Yu H, Zheng X, Cheng X and Hou J 2015 arXiv: 1505.06322
|
[19] |
Wang J 2015 Proceedings of SPIE OPTO, Optical Components and Materials XⅡ (San Francisco, California, USA) Vol. 9359, p. 935902
|
[20] |
Buscema M, Groenendijk D J, Blanter S I, Steele G A, Zant H S and Gomez A C 2014 Nano Lett. 14 3347
|
[21] |
Zhang M, Hu G, Hu G, Howe R C T, Chen L, Zheng Z and Hasan T 2015 Sci. Rep. 5 1748210
|
[22] |
Wang Q H, Kalantar-Zadeh K, Kis A Coleman J N and Strano M S 2012 Nat. Nanotech. 7 699
|
[23] |
Bonaccorso F, Sun Z, Hasan T and Ferrari A C 2010 Nat. Photon. 4 611
|
[24] |
Hanlon D, Backes C, Doherty E, et al. 2015 Nat. Commun. 6 8563
|
[25] |
Sun Z, Popa D, Hasan T, Torrisi F, Wang F, Kelleher E J R, Travers J C, Nicolosi V and Ferrari A C 2010 Nano Research 3 653
|
[26] |
Martinez A and Sun Z 2013 Nat. Photon. 7 842
|
[27] |
Hsieh D, Qian D, Wray L, Xia Y, Hor Y S, Cava R J and Hasan M Z 2008 Nature 452 970
|
[28] |
Zhang H, Liu C, Qi X, Dai X, Fang Z and Zhang Se 2009 Nat. Phys. 5 438
|
[29] |
Moore J E 2010 Nature 464 194
|
[30] |
Ramakrishna Matte H S S, Gomathi A, Manna A K, Late D J, Datta R, Pati S K and Rao C N R 2010 Angew. Chem. 122 4153
|
[31] |
Sadeq S A, Al-Hayali S K, Harun S W and Al-Janabi A 2018 Results in Physics 10 264
|
[32] |
Khaleel W A, Sadeq S A, Alani I A M and Ahmed M H M 2019 Opt. Laser Technol. 115 331
|
[33] |
Nady A, Ahmed M H M, Latiff A A, Numan A, Ooi C H R and Harun S We 2017 Laser Phys. 27 065105
|
[34] |
Jagadish C and Pearton S J 2006 Zinc Oxide Bulk, Thin Films and Nanostructures: Processing, Properties, and Applications (Amsterdam: Elsevier)
|
[35] |
Mang A and Reimann K 1995 Solid State Commun. 94 251
|
[36] |
Reynolds D C, Look D C and Jogai B 1996 Solid State Commun. 99 873
|
[37] |
Bagnall D M, Chen Y F, Zhu Z and Yao T 1997 Appl. Phys. Lett. 70 2230
|
[38] |
Wang Z L 2004 J. Phys. Condens. Matter 16 R829
|
[39] |
Johnson J C, Knutsen K P, Yan H, Law M, Zhang Y, Yang P and Saykally R J 2004 Nano Lett. 4 197
|
[40] |
Janotti A and Van de Walle C G 2009 Rep. Prog. Phys. 72 126501
|
[41] |
Aziz N A, Latiff A A, Lokman M Q, Hanafi E and Harun S W 2017 Chin. Phys. Lett. 34 044202
|
[42] |
Lin J H, Chen Y J, Lin H Y and Hsieh W F 2005 J. Appl. Phys. 97 033526
|
[43] |
Petrov G I, Shcheslavskiy V, Yakovlev V V, Ozerov I, Chelnokov E and Marine W 2003 Appl. Phys. Lett. 83 3993
|
[44] |
Khan A 2010 J. Pak. Mater. Soc. 4 5
|
[45] |
Zhang R, Yin P G, Wang N and Guo L 2009 Solid State Sci. 11 865
|
[46] |
Ashkenov N and Mbenkum B N 2003 J. Appl. Phys. 93 126
|
[47] |
Ahmad H, Muhammad F D, Zulkifli M Z and Harun S W 2012 IEEE Photon. J. 4 2205
|
[48] |
Ahmad H, Reduan S A, Ali Z A, Ismail M A, Ruslan N E, Lee C S J, Puteh R and Harun S W 2016 IEEE Photon. J. 8 1500107
|
[49] |
Siddiq N A, Chong W Y, Yap Y K, Pramono Y H and Ahmad H 2018 Laser Phys. 28 125104
|
[50] |
Nady A, Ahmed M H M, Numan A, Ramesh S, Latiff A A, Ooi C H R, Arof H and Harun S W 2017 J. Mod. Opt. 64 1315
|
[51] |
Huang Y, Luo Z, Li Y, Zhong M, Xu B, Che K, Xu H, Cai Z, Peng J and Weng J 2014 Opt. Express 22 25258
|
[52] |
Lau K Y, Latif A A, Abu Bakar M H, Muhammad F D, Omar M F and Mahdi M A 2017 Appl. Phys. B 123 221
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|