Please wait a minute...
Chin. Phys. B, 2019, Vol. 28(7): 077402    DOI: 10.1088/1674-1056/28/7/077402
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES Prev   Next  

High quality NbTiN films fabrication and rapid thermal annealing investigation

Huan Ge(葛欢)1, Yi-Rong Jin(金贻荣)1,2, Xiao-Hui Song(宋小会)1
1 Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, University of Chinese Academy of Sciences, Beijing 100190, China;
2 Beijing Academy of Quantum Information Sciences, Beijing 100193, China
Abstract  

NbTiN thin films are good candidates for applications including single-photon detector, kinetic inductance detector, hot electron bolometer, and superconducting quantum computing circuits because of their favorable characteristics, such as good superconducting properties and easy fabrication. In this work, we systematically investigated the growth of high-quality NbTiN films with different thicknesses on Si substrates by reactive DC-magnetron sputtering method. After optimizing the growth conditions, such as the gas pressure, Ar/N2 mixture ratio, and sputtering power, we obtained films with excellent superconducting properties. A high superconducting transition temperature of 15.5 K with narrow transition width of 0.03 K was obtained in a film of 300 nm thickness with surface roughness of less than 0.2 nm. In an ultra-thin film of 5 nm thick, we still obtained a transition temperature of 7.6 K. In addition, rapid thermal annealing (RTA) in atmosphere of nitrogen or nitrogen and hydrogen mixture was studied to improve the film quality. The results showed that Tc and crystal size of the NbTiN films were remarkably increased by RTA. For ultrathin films, the annealing in N2/H2 mixture had better effect than that in pure N2. The Tc of 10 nm films improved from 9.6 K to 10.3 K after RTA in N2/H2 mixture at 450℃.

Keywords:  superconducting transition temperature      surface roughness      NbTiN film      rapid thermal annealing  
Received:  28 January 2019      Revised:  16 May 2019      Accepted manuscript online: 
PACS:  74.25.-q (Properties of superconductors)  
  74.25.F- (Transport properties)  
  74.78.-w (Superconducting films and low-dimensional structures)  
Fund: 

Project supported by the Chinese Academy of Sciences Strategic Priority Research Program B (Grant No. XDB07010300) and the National Natural Science Foundation of China (Grant No. 11674376).

Corresponding Authors:  Xiao-Hui Song     E-mail:  xhsong@iphy.ac.cn

Cite this article: 

Huan Ge(葛欢), Yi-Rong Jin(金贻荣), Xiao-Hui Song(宋小会) High quality NbTiN films fabrication and rapid thermal annealing investigation 2019 Chin. Phys. B 28 077402

[1] Tanner M G, Natarajan C M, Pottapenjara V K, O'Connor J A, Warburton R J, Hadfield R H, Baek B, Nam S, Dorenbos S N, Bermudez Urena E, Zijlstra T, Klapwijk T M and Zwiller V 2010 Appl. Phys. Lett. 96 221109
[2] Schuck C, Pernice W H P and Tang H X 2013 Sci. Rep. 3 1893
[3] Zadeh I E, Johannes W N Los, Gourgues R B M, Steinmetz V, Dobrovolskiy S M, Zwiller V and Dorenbos S N 2017 APL Photon. 2 111301
[4] Jia X Q, Kang L, Yang X Z, Wang Z H, Ren T K, Jin B B, Chen J, Xu W W and Wu P H 2015 IEEE Trans. Appl. Supercond. 25 3
[5] Jiang L, Shiba S, Shimbo K, Sakai N, Yamakura T, Sugimura M, Ananthasubramanian P G, Maezawa H, Irimajiri Y and Yamamoto S 2009 IEEE Trans. Appl. Supercond. 19 3
[6] Jiang L, Shiba S, Shiino T, Shimbo K, Sakai N, Yamakura T, Irimajiri Y, Ananthasubramanian P G, Maezawa H and Yamamoto S 2010 Supercond. Sci. Technol. 23 4
[7] Shiba S, Irimajiri Y, Yamakura T, Maezawa H, Sekine N, Hosako I and Yamamoto S 2012 IEEE Trans. Appl. Supercond. 2 1
[8] Westig M P, Selig S, Jacobs K, Klapwijk T M and Honingh C E 2013 J. Appl. Phys. 114 124504
[9] Jackson B D, Baryshev A M, Lange G de, Gao J R, Shitov S V, Iosad N N and Klapwijk T M 2001 Appl. Phys. Lett. 79 436
[10] Akaike H, Sakamoto S, Munemoto K and Fujimaki A 2016 IEEE Trans. Appl. Supercond. 26 5
[11] Bruno A, Lange G de, Asaad S, Enden K L van der, Langford N K and DiCarlo L 2015 Appl. Phys. Lett. 106 182601
[12] Myoren H, Shimizu H, Iizuka T and Takada S 2001 IEEE. Trans. Appl. Supercond. 11 3828
[13] Yu L, Singh R K, Liu H, Wu S Y, Hu R, Durand D, Bulman J, Rowell J M and Newman N 2005 IEEE Trans. Appl. Supercond. 15 44
[14] Makise K, Terai H, Takeda M, Uzawa Y and Wang Z 2011 IEEE Trans. Appl. Supercond. 21 139
[15] Yang X Y, You L X, Zhang L, Lv C L, Li H, Liu X Y, Zhou H and Zhen Wang 2018 IEEE Trans. Appl. Supercond. 28 1
[16] Shiino T, Shiba S, Sakai N, Yamakura T, Jiang L, Uzawa Y, Maezawa H and Yamamoto S 2010 Supercond. Sci. Technol. 23 045004
[17] Loudkov D, Tong C Y E, Blundell R, Megerian K G and Stern J A 2005 IEEE Trans. Appl. Supercond. 15 476
[18] Zhang L, Peng W, You L X and Wang Z 2015 Appl. Phys. Lett. 107 122603
[19] Guziewicz M, Laszcz A, Domagala J Z, Golaszewska K, Ratajczak J, Kruszka R, Juchniewicz M, Czerwinski A and Slysz W 2013 Proc. SPIE 8902 89022S
[20] Zhang X, Song X H and Zhang D L 2010 Chin. Phys. B 19 086802
[21] Hatano M, Nishino T and Kawabe U 1988 J. Vac. Sci. Technol. 6 2381
[22] Kohlstedt H, Konig F, Henne P, Thyssen N and Caputob P 1996 J. Appl. Phys. 80 9
[23] Song X H, Jin Y R, Fan Z J, Mi Z Y and Zhang D L 2015 Chin. Phys. Lett. 32 047403
[24] Iosad N N, Pers N M van der, Grachev S, Roddatis V V, Jackson B D, Polyakov S N, Dmitriev P N and Klapwijk T M 2002 J. Appl. Phys. 92 9
[25] Chockalingam S P, Chand M, Jesudasan J, Tripathi V and Raychaudhuri P 2008 Phys. Rev. B 77 214503
[26] Zhang L, You L X, Ying L L, Peng W and Wang Z 2018 Physica C 545 1
[1] Effect of Cu doping on the secondary electron yield of carbon films on Ag-plated aluminum alloy
Tiancun Hu(胡天存), Shukai Zhu(朱淑凯), Yanan Zhao(赵亚楠), Xuan Sun(孙璇), Jing Yang(杨晶), Yun He(何鋆), Xinbo Wang(王新波), Chunjiang Bai(白春江), He Bai(白鹤), Huan Wei(魏焕), Meng Cao(曹猛), Zhongqiang Hu(胡忠强), Ming Liu(刘明), and Wanzhao Cui(崔万照). Chin. Phys. B, 2022, 31(4): 047901.
[2] Characterization of low-resistance ohmic contacts to heavily carbon-doped n-type InGaAsBi films treated by rapid thermal annealing
Shu-Xing Zhou(周书星), Li-Kun Ai(艾立鹍), Ming Qi(齐鸣), An-Huai Xu(徐安怀), Jia-Sheng Yan(颜家圣), Shu-Sen Li(李树森), and Zhi Jin(金智). Chin. Phys. B, 2021, 30(2): 027304.
[3] Effects of post-annealed floating gate on the performance of AlGaN/GaN heterostructure field-effect transistors
Peng Cui(崔鹏), Zhao-Jun Lin(林兆军), Chen Fu(付晨), Yan Liu(刘艳), Yuan-Jie Lv(吕元杰). Chin. Phys. B, 2017, 26(12): 127102.
[4] Measurement and analysis of the surface roughness of Ag film used in plasmonic lithography
Gao-Feng Liang(梁高峰), Jiao Jiao(焦蛟), Xian-Gang Luo(罗先刚), Qing Zhao(赵青). Chin. Phys. B, 2017, 26(1): 016801.
[5] Fabrication of VO2 thin film by rapid thermal annealing in oxygen atmosphere and its metal-insulator phase transition properties
Liang Ji-Ran (梁继然), Wu Mai-Jun (吴劢君), Hu Ming (胡明), Liu Jian (刘剑), Zhu Nai-Wei (朱乃伟), Xia Xiao-Xu (夏晓旭), Chen Hong-Da (陈弘达). Chin. Phys. B, 2014, 23(7): 076801.
[6] Effect of inner-surface roughness of conical target on laser absorption and fast electron generation
Wang Huan (王欢), Cao Li-Hua (曹莉华), Zhao Zong-Qing (赵宗清), Yu Ming-Yang (郁明阳), Gu Yu-Qiu (谷渝秋), He Xian-Tu (贺贤土). Chin. Phys. B, 2014, 23(5): 055202.
[7] Electron mobility limited by surface and interface roughness scatterings in AlxGa1-xN/GaN quantum wells
Wang Jian-Xia (王建霞), Yang Shao-Yan (杨少延), Wang Jun (王俊), Liu Gui-Peng (刘贵鹏), Li Zhi-Wei (李志伟), Li Hui-Jie (李辉杰), Jin Dong-Dong (金东东), Liu Xiang-Lin (刘祥林), Zhu Qin-Sheng (朱勤生), Wang Zhan-Guo (王占国). Chin. Phys. B, 2013, 22(7): 077305.
[8] Effects of rapid thermal annealing on room temperature NO2-sensing properties of WO3 thin film under LED radiation
Hu Ming (胡明), Jia Ding-Li (贾丁立), Liu Qing-Lin (刘青林), Li Ming-Da (李明达), Sun Peng (孙鹏). Chin. Phys. B, 2013, 22(6): 068204.
[9] Effects of rapid thermal annealing on the morphology and optical properity of ultrathin InSb film deposited on SiO2/Si substrate
Li Deng-Yue (李邓玥), Li Hong-Tao (李洪涛), Sun He-Hui (孙合辉), Zhao Lian-Cheng (赵连城 ). Chin. Phys. B, 2013, 22(2): 027802.
[10] Effects of high temperature rapid thermal annealing on Ge films grown on Si(001) substrate
Liu Zhi (刘智), Cheng Bu-Wen (成步文), Li Ya-Ming (李亚明), Li Chuan-Bo (李传波), Xue Chun-Lai (薛春来), Wang Qi-Ming (王启明). Chin. Phys. B, 2013, 22(11): 116804.
[11] The effects of strain and surface roughness scattering on the quasi-ballistic characteristics of a Ge nanowire p-channel field-effect transistor
Qin Jie-Yu (秦洁宇), Du Gang (杜刚), Liu Xiao-Yan (刘晓彦). Chin. Phys. B, 2013, 22(10): 107104.
[12] Performance improvement of CdS/Cu(In,Ga)Se2 solar cells after rapid thermal annealing
Chen Dong-Sheng (陈东生), Yang Jie (杨洁), Xu Fei (徐飞), Zhou Ping-Hua (周平华), Du Hui-Wei (杜汇伟), Shi Jian-Wei (石建伟), Yu Zheng-Shan (于征汕), Zhang Yu-Hong (张玉红), Brian Bartholomeusz, Ma Zhong-Quan (马忠权). Chin. Phys. B, 2013, 22(1): 018801.
[13] Three-dimensional Monte Carlo simulation of bulk fin field effect transistor
Wang Jun-Cheng (王骏成), Du Gang (杜刚), Wei Kang-Liang (魏康亮), Zhang Xing (张兴), Liu Xiao-Yan (刘晓彦 ). Chin. Phys. B, 2012, 21(11): 117308.
[14] Influence of Boron doping on microcrystalline silicon growth
Li Xin-Li(李新利), Chen Yong-Sheng(陈永生), Yang Shi-E(杨仕娥), Gu Jin-Hua(谷锦华), Lu Jing-Xiao(卢景霄), Gao Xiao-Yong(郜小勇), Li Rui(李瑞), Jiao Yue-Chao(焦岳超), Gao Hai-Bo(高海波), and Wang Guo(王果) . Chin. Phys. B, 2011, 20(9): 096801.
[15] Measurement of inner surface roughness of capillary by an x-ray reflectivity method
Li Yu-De(李玉德),Lin Xiao-Yan(林晓燕),Tan Zhi-Yuan(谭植元), Sun Tian-Xi(孙天希),and Liu Zhi-Guo(刘志国) . Chin. Phys. B, 2011, 20(4): 040702.
No Suggested Reading articles found!