Please wait a minute...
Chin. Phys. B, 2019, Vol. 28(7): 077401    DOI: 10.1088/1674-1056/28/7/077401
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES Prev   Next  

Quantum Monte Carlo study of the dominating pairing symmetry in doped honeycomb lattice

Xingchuan Zhu(朱兴川)1, Tao Ying(应涛)2, Huaiming Guo(郭怀明)3, Shiping Feng(冯世平)1
1 Department of Physics, Beijing Normal University, Beijing 100875, China;
2 Department of Physics, Harbin Institute of Technology, Harbin 150001, China;
3 Department of Physics, Key Laboratory of Micro-Nano Measurement-Manipulation and Physics(Ministry of Education), Beihang University, Beijing 100191, China
Abstract  

We perform a systematic determinant quantum Monte Carlo (DQMC) study of the dominating pairing symmetry in a doped honeycomb lattice. The Hubbard model is simulated over a full range of filling levels for both weak and strong interactions. For weak couplings, the d-wave state dominates. The effective susceptibility as a function of filling shows a peak, and its position moves toward half filling as the temperature is increased, from which the optimal filling of the superconducting ground state is estimated. Although the sign problem becomes severe for strong couplings, the simulations access the lowest temperature at which the DQMC method generates reliable results. As the coupling is strengthened, the d-wave state is enhanced in the high-filling region. Our systematic DQMC results provide new insights into the superconducting pairing symmetry in the doped honeycomb lattice.

Keywords:  determinant quantum Monte Carlo (DQMC) simulation      honeycomb lattice      superconducting pairing symmetry  
Received:  20 March 2019      Revised:  22 April 2019      Accepted manuscript online: 
PACS:  74.20.Rp (Pairing symmetries (other than s-wave))  
  03.65.Vf (Phases: geometric; dynamic or topological)  
  73.21.Cd (Superlattices)  
Fund: 

Project supported by the National Natural Science Foundation of China (Grant Nos. 11774019, 11504067, 11574032, and 11734002), the National Key Research and Development Program of China (Grant No. 2016YFA0300304), and the Fundamental Research Funds for the Central Universities, China (Grant No. HIT.NSRIF.2019057).

Corresponding Authors:  Huaiming Guo     E-mail:  hmguo@buaa.edu.cn

Cite this article: 

Xingchuan Zhu(朱兴川), Tao Ying(应涛), Huaiming Guo(郭怀明), Shiping Feng(冯世平) Quantum Monte Carlo study of the dominating pairing symmetry in doped honeycomb lattice 2019 Chin. Phys. B 28 077401

[1] Novoselov K S, Geim A K, Morozov S V, Jiang D, Zhang Y, Dubonos S V, Grigorieva I V and Firsov A A 2004 Science 306 666
[2] Castro Neto A H, Guinea F, Peres N M R, Novoselov K S and Geim A K 2009 Rev. Mod. Phys. 81 109
[3] Kotov V N, Uchoa B, Pereira V M, Guinea F and Castro Neto A H 2012 Rev. Mod. Phys. 84 1067
[4] Davydov S Yu 2018 Semiconductors 52 335
[5] Black-Schaffer A M and Honerkamp C 2014 J. Phys.: Condens. Matter 26 423201
[6] Sun J P, Zhang D and Chang K 2017 Chin. Phys. Lett. 34 027102
[7] Black-Schaffer A M and Doniach S 2007 Phys. Rev. B 75 134512
[8] Black-Schaffer A M, Wu Wei and Le Hur K 2014 Phys. Rev. B 90 054521
[9] Wu W, Scherer M M, Honerkamp C and Le Hur K 2013 Phys. Rev. B 87 094521
[10] Pathak S, Shenoy V B and Baskaran G 2010 Phys. Rev. B 81 085431
[11] Gu Z C, Jiang H C, Sheng D N, Yao H, Balents L and Wen X G 2013 Phys. Rev. B 88 155112
[12] Ma T X, Huang Z B, Hu F M and Lin H Q 2011 Phys. Rev. B 84 121410
[13] Honerkamp C 2008 Phys. Rev. Lett. 100 146404
[14] Faye J P L, Sahebsara P and Sénéchal D 2015 Phys. Rev. B 92 085121
[15] Faye J P L, Diarra M N and Sénéchal D 2016 Phys. Rev. B 93 155149
[16] Xiao L Y, Yu S L, Wang W, Yao Z J and Li J X 2016 Europhys. Lett. 115 27008
[17] Nandkishore R, Levitov L S and Chubukov A V 2012 Nat. Phys. 8 158
[18] Kiesel M L, Platt C, Hanke W, Abanin D A and Thomale R 2012 Phys. Rev. B 86 020507
[19] Wang W S, Xiang Y Y, Wang Q H, Wang F, Yang F and Lee D H 2012 Phys. Rev. B 85 035414
[20] Jiang S H, Mesaros A and Ran Y 2014 Phys. Rev. X 4 031040
[21] Ying T and Wessel S 2018 Phys. Rev. B 97 075127
[22] Xu X Y, Wessel S and Meng Z Y 2016 Phys. Rev. B 94 115105
[23] Ma T X, Yang F, Yao H and Lin H Q 2014 Phys. Rev. B 90 245114
[24] Lin H Q, Gubernatis J E, Gould H and Tobochnik J 1993 Computers in Physics 7 400
[25] Schollwöck U 2005 Rev. Mod. Phys. 77 259
[26] Maier T, Jarrell M, Pruschke T and Hettler M H 2005 Rev. Mod. Phys. 77 1027
[27] Metzner W, Salmhofer M, Honerkamp C, Meden V and Schönhammer K 2012 Rev. Mod. Phys. 84 299
[28] Chang C C, Gogolenko S, Perez J, Bai Z J and Scalettar R T 2015 Philosophical Magazine 95 1260
[29] Santos R R D 2003 Brazilian Journal of Physics 33 36
[30] Blankenbecler R, Scalapino D J and Sugar R L 1981 Phys. Rev. D 24 2278
[31] White S R, Scalapino D J, Sugar R L, Loh E Y, Gubernatis J E and Scalettar R T 1989 Phys. Rev. B 40 506
[32] White S R, Scalapino D J, Sugar R L, Bickers N E and Scalettar R T 1989 Phys. Rev. B 39 839
[33] Loh E Y, Gubernatis J E, Scalettar R T, White S R, Scalapino D J and Sugar R L 1990 Phys. Rev. B 41 9301
[34] Troyer M and Wiese U J 2005 Phys. Rev. Lett. 94 170201
[35] Iglovikov V I, Khatami E and Scalettar R T 2015 Phys. Rev. B 92 045110
[36] In the DQMC method, the inverse temperature is discretized to L pieces to isolate the interaction term using the Trotter approximation. The trace of the partition function is translated into a determinant of a real matrix, which contains a product of L matrixes. Since L is large at low temperatures, there is a bigger chance that the determinant becomes negative. Moreover strong interactions make the values of the elements in the matrix large, which further increases the probability of a negative determinant. Of course, the sign problem is very complex, and we only provide a qualitative expanation why it becomes severe upon lowering the temperature and increasing the interaction strength.
[37] Guo H M, Khatami E, Wang Y, Devereaux T P, Singh R R P and Scalettar R T 2018 Phys. Rev. B 97 155146
[38] Khatami E, Scalettar R T and Singh R R P 2015 Phys. Rev. B 91 241107
[1] Fabrication of honeycomb AuTe monolayer with Dirac nodal line fermions
Qin Wang(汪琴), Jie Zhang(张杰), Jierui Huang(黄杰瑞), Jinan Shi(时金安), Shuai Zhang(张帅), Hui Guo(郭辉), Li Huang(黄立), Hong Ding(丁洪), Wu Zhou(周武), Yan-Fang Zhang(张艳芳), Xiao Lin(林晓), Shixuan Du(杜世萱), and Hong-Jun Gao(高鸿钧). Chin. Phys. B, 2023, 32(1): 016102.
[2] Topological Lifshitz transition and novel edge states induced by non-Abelian SU(2) gauge field on bilayer honeycomb lattice
Wen-Xiang Guo(郭文祥) and Wu-Ming Liu(刘伍明). Chin. Phys. B, 2022, 31(5): 057302.
[3] Nodal superconducting gap in LiFeP revealed by NMR: Contrast with LiFeAs
A F Fang(房爱芳), R Zhou(周睿), H Tukada, J Yang(杨杰), Z Deng(邓正), X C Wang(望贤成) , C Q Jin(靳常青), and Guo-Qing Zheng(郑国庆). Chin. Phys. B, 2021, 30(4): 047403.
[4] Asymmetric response of magnetic impurity in Bernal-stacked bilayer honeycomb lattice
Jin-Hua Sun(孙金华), Ho-Kin Tang(邓皓键). Chin. Phys. B, 2018, 27(7): 077502.
[5] Bogoliubov excitations in a Bose-Hubbard model on a hyperhoneycomb lattice
Wen-yan Zhou(周雯琰), Ya-jie Wu(吴亚杰), Su-Peng Kou(寇谡鹏). Chin. Phys. B, 2018, 27(5): 050302.
[6] Magnetic hysteresis, compensation behaviors, and phase diagrams of bilayer honeycomb lattices
Ersin Kantar. Chin. Phys. B, 2015, 24(10): 107501.
[7] Monte Carlo study of the antiferromagnetical Ising model on a centred honeycomb lattice
Wang Zhou-Fei(王宙斐) and Chen Li(陈莉). Chin. Phys. B, 2009, 18(5): 2048-2053.
No Suggested Reading articles found!