Please wait a minute...
Chin. Phys. B, 2019, Vol. 28(7): 077403    DOI: 10.1088/1674-1056/28/7/077403
RAPID COMMUNICATION Prev   Next  

Evolution of incommensurate superstructure and electronic structure with Pb substitution in (Bi2-xPbx)Sr2CaCu2O8+δ superconductors

Jing Liu(刘静)1,2, Lin Zhao(赵林)1, Qiang Gao(高强)1,2, Ping Ai(艾平)1,2, Lu Zhang(张璐)1,2, Tao Xie(谢涛)1,2, Jian-Wei Huang(黄建伟)1,2, Ying Ding(丁颖)1,2, Cheng Hu(胡成)1,2, Hong-Tao Yan(闫洪涛)1,2, Chun-Yao Song(宋春尧)1,2, Yu Xu(徐煜)1,2, Cong Li(李聪)1,2, Yong-Qing Cai(蔡永青)1,2, Hong-Tao Rong(戎洪涛)1,2, Ding-Song Wu(吴定松)1,2, Guo-Dong Liu(刘国东)1, Qing-Yan Wang(王庆艳)1, Yuan Huang(黄元)1, Feng-Feng Zhang(张丰丰)3, Feng Yang(杨峰)3, Qin-Jun Peng(彭钦军)3, Shi-Liang Li(李世亮)1,2,5, Huai-Xin Yang(杨槐馨)1,2, Jian-Qi Li(李建奇)1,2,5, Zu-Yan Xu(许祖彦)3, Xing-Jiang Zhou(周兴江)1,2,4,5
1 Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China;
2 University of Chinese Academy of Sciences, Beijing 100049, China;
3 Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, China;
4 Songshan Lake Materials Laboratory, Dongguan 523808, China;
5 Collaborative Innovation Center of Quantum Matter, Beijing 100871, China
Abstract  

High-quality Bi2-xPbxSr2CaCu2O8+δ (Bi2212) single crystals have been successfully grown by the traveling solvent floating zone technique with a wide range of Pb substitution (x=0-0.8). The samples are characterized by transmission electron microscope (TEM) and measured by high resolution laser-based angle-resolved photoemission spectroscopy (ARPES) with different photon energies. A systematic evolution of the electronic structure and superstructure with Pb substitution has been revealed for the first time. The superstructure shows a significant change with Pb substitution and the incommensurate modulation vector (Q) decreases with increasing Pb substitution. In the meantime, the superstructure intensity from ARPES measurements also decreases dramatically with increasing Pb concentration. The superstructure in Bi2212 can be effectively suppressed by Pb substitution and it nearly disappears with a Pb substitution of x=0.8. We also find that the superstructure bands in ARPES measurements depend sensitively on the photon energy of lasers used; they can become even stronger than the main band when using a laser photon energy of 10.897 eV. These results provide important information on the origin of the incommensurate superstructure and its control and suppression in bismuth-based high temperature superconductors.

Keywords:  Bi2-xPbxSr2CaCu2O8+δ      superstructure      electronic structure      angle-resolved photoemission spectroscopy (ARPES)      modulation  
Received:  23 May 2019      Revised:  25 May 2019      Accepted manuscript online: 
PACS:  74.25.Jb (Electronic structure (photoemission, etc.))  
  79.60.-i (Photoemission and photoelectron spectra)  
  71.18.+y (Fermi surface: calculations and measurements; effective mass, g factor)  
Fund: 

Project supported by the National Key Research and Development Program of China (Grant Nos. 2016YFA0300300 and 2017YFA0302900), the Strategic Priority Research Program (B) of the Chinese Academy of Sciences (Grant Nos. XDB07020300 and XDB25000000), the National Natural Science Foundation of China (Grant Nos. 11334010 and 11534007), and the Youth Innovation Promotion Association of Chinese Academy of Sciences (Grant No. 2017013).

Corresponding Authors:  Lin Zhao, Xing-Jiang Zhou     E-mail:  lzhao@iphy.ac.cn;XJZhou@iphy.ac.cn

Cite this article: 

Jing Liu(刘静), Lin Zhao(赵林), Qiang Gao(高强), Ping Ai(艾平), Lu Zhang(张璐), Tao Xie(谢涛), Jian-Wei Huang(黄建伟), Ying Ding(丁颖), Cheng Hu(胡成), Hong-Tao Yan(闫洪涛), Chun-Yao Song(宋春尧), Yu Xu(徐煜), Cong Li(李聪), Yong-Qing Cai(蔡永青), Hong-Tao Rong(戎洪涛), Ding-Song Wu(吴定松), Guo-Dong Liu(刘国东), Qing-Yan Wang(王庆艳), Yuan Huang(黄元), Feng-Feng Zhang(张丰丰), Feng Yang(杨峰), Qin-Jun Peng(彭钦军), Shi-Liang Li(李世亮), Huai-Xin Yang(杨槐馨), Jian-Qi Li(李建奇), Zu-Yan Xu(许祖彦), Xing-Jiang Zhou(周兴江) Evolution of incommensurate superstructure and electronic structure with Pb substitution in (Bi2-xPbx)Sr2CaCu2O8+δ superconductors 2019 Chin. Phys. B 28 077403

[32] Gao Y A N, Lee P, Coppens P, Subramania M A and Sleight A W 1988 Science 241 954
[1] Tsuei C C and Kirtley J R 2000 Rev. Mod. Phys. 72 969
[33] Eibl O 1991 Physica C 175 419
[2] Timusk T and Statt B 1999 Rep. Prog. Phys. 62 61
[34] Heinrich H, Kostorz G, Heeb B and Gauckler L J 1994 Physica C 224 133
[35] Withers R L, Thompson J G, Wallenberg L R, Fitz Gerald J D, Anderson J S and Hyde B G 1988 J. Phys. C 21 6067
[36] Aebi P, Osterwalder J, Schwaller P, Schlapbach L, Shimoda M, Mochiku T and Kadowaki K 1994 Phys. Rev. Lett. 72 2757
[3] Damascelli A, Hussain Z and Shen Z X 2003 Rev. Mod. Phys. 75 473
[37] Osterwalder J, Aebi P, Schwaller P, Schlapbach L, Shimoda M, Mochiku T and Kadowaki K 1995 Appl. Phys. A 60 247
[4] Lee P A, Nagaosa N and Wen X G 2006 Rev. Mod. Phys. 78 17
[38] Ding H, Bellman A F, Campuzano J C, Randeria M, Norman M R, Yokoya T, Takahashi T, KatayamaYoshida H, Mochiku T, Kadowaki K, Jennings G and Brivio G P 1996 Phys. Rev. Lett. 76 1533
[5] Keimer B, Kivelson S A, Norman M R, Uchida S and Zaanen J 2015 Nature 518 179
[39] Fretwell H M, Kaminski A, Mesot J, Campuzano J C, Norman M R, Randeria M, Sato T, Gatt R, Takahashi T and Kadowaki K 2000 Phys. Rev. Lett. 84 4449
[6] Campuzano J C, Norman M R and Randeria M 2004 Physics of Superconductors (Berlin: Springer) Vol. 2 p. 167
[40] Chong I, Hiroi Z, Izumi M, Shimoyama J, Nakayama Y, Kishio K, Terashima T, Bando Y and Takano M 1997 Science 276 770
[7] Zhou X J, Cuk T, Devereaux T, Nagaosa N and Shen Z X 2007 Handbook of High Temperature Superconductivity: Theory and Experiment (Berlin: Springer) p. 87
[41] Fournier P, Kapitulnik A and Marshall A F 1996 Physica C 257 291
[8] Zhou X J, He S L, Liu G D, Zhao L, Yu L and Zhang W T 2018 Rep. Prog. Phys. 81 062101
[42] Kendziora C, Qadri S B and Skelton E 1997 Phys. Rev. B 56 14717
[9] Shen Z X, Dessau D S, Wells B O, King D M, Spicer W E, Arko A J, Marshall D, Lombardo L W, Kapitulnik A, Dickinson P, Doniach S, DiCarlo J, Loeser T and Park C H 1993 Phys. Rev. Lett. 70 1553
[43] Schwaller P, Aebi P, Berger H, Beeli C, Osterwalder J and Schlapbach L 1995 J. Electron. Spectrosc. Relat. Phenom. 76 127
[10] Ding H, Norman M R, Campuzano J C, Randeria M, Bellman A F, Yokoya T, Takahashi T, Mochiku T and Kadowaki K 1996 Phys. Rev. B 54 9678
[44] Legner S, Borisenko S V, Durr C, Pichler T, Knupfer M, Golden M S, Fink J, Yang G, Abell S, Berger H, Muller R, Janowitz C and Reichardt G 2000 Phys. Rev. B 62 154
[45] Bogdanov P V, Lanzara A, Zhou X J, Kellar S A, Feng D L, Lu E D, Eisaki H, Shimoyama J I, Kishio K, Hussain Z and Shen Z X 2001 Phys. Rev. B 64 180505
[11] Hashimoto M, Nowadnick E A, He R H, Vishik I M, Moritz B, He Y, Tanaka K, Moore R G, Lu D H, Yoshida Y, Ishikado M, Sasagawa T, Fujita K, Ishida S, Uchida S, Eisaki H, Hussain Z, Devereaux T P and Shen Z X 2015 Nat. Mater. 14 37
[12] Sun X, Zhang W T, Zhao L, Liu G D, Gu G D, Peng Q J, Wang Z M, Zhang S J, Yang F, Chen C T, Xu Z Y and Zhou X J 2018 Chin. Phys. Lett. 35 017401
[46] Takeuchi T, Kaga H, Okada Y, Ikuta H, Baba T, Tsuda S and Shin S 2007 J. Electron. Spectrosc. Relat. Phenom. 156 452
[13] Marshall D S, Dessau D S, Loeser A G, Park C H, Matsuura A Y, Eckstein J N, Bozovic I, Fournier P, Kapitulnik A, Spicer W E and Shen Z X 1996 Phys. Rev. Lett. 76 4841
[47] Ziegler B, Muller B, Krapf A, Dwelk H, Janowitz C and Manzke R 2008 Phys. Rev. B 77 054520
[14] Loeser A G, Shen Z X, Dessau D S, Marshall D S, Park C H, Fournier P and Kapitulnik A 1996 Science 273 325
[48] Liu S Y, Zhang W T, Zhao L, Liu H Y, Wu Y, Liu G D, Dong X L and Zhou X J 2012 Chin. Phys. Lett. 29 087401
[15] Ding H, Yokoya T, Campuzano J C, Takahashi T, Randeria M, Norman M R, Mochiku T, Kadowaki K and Giapintzakis J 1996 Nature 382 51
[49] Zhang Y, Wang C L, Yu L, Liu G D, Liang A J, Huang J W, Nie S M, Sun X, Zhang Y X, Shen B, Liu J, Weng H M, Zhao L X, Chen G F, Jia X W, Hu C, Ding Y, Zhao W J, Gao Q, Li C, He S L, Zhao L, Zhang F F, Zhang S J, Yang F, Wang Z M, Peng Q J, Dai X, Fang Z, Xu Z Y, Chen C T and Zhou X J 2017 Nat. Commun. 8 15512
[16] Bogdanov P V, Lanzara A, Kellar S A, Zhou X J, Lu E D, Zheng W J, Gu G, Shimoyama J I, Kishio K, Ikeda H, Yoshizaki R, Hussain Z and Shen Z X 2000 Phys. Rev. Lett. 85 2581
[50] Guo C, Tian H F, Yang H X, Zhang B, Sun K, Sun X, Peng Y Y, Zhou X J and Li J Q 2017 Phys. Rev. Mater. 1 064802
[17] Johnson P D, Valla T, Fedorov A V, Yusof Z, Wells B O, Li Q, Moodenbaugh A R, Gu G D, Koshizuka N, Kendziora C, Jian S and Hinks D G 2001 Phys. Rev. Lett. 87 177007
[51] Feng D L, Armitage N P, Lu D H, Damascelli A, Hu J P, Bogdanov P, Lanzara A, Ronning F, Shen K M, Eisaki H, Kim C, Shen Z X, Shimoyama J and Kishio K 2001 Phys. Rev. Lett. 86 5550
[18] Kaminski A, Randeria M, Campuzano J C, Norman M R, Fretwell H, Mesot J, Sato T, Takahashi T and Kadowaki K 2001 Phys. Rev. Lett. 86 1070
[52] Mans A, Santoso I, Huang Y, Siu W K, Tavaddod S, Arpiainen V, Lindroos M, Berger H, Strocov V N, Shi M, Patthey L and Golden M S 2006 Phys. Rev. Lett. 96 107007
[19] Lanzara A, Bogdanov P V, Zhou X J, Kellar S A, Feng D L, Lu E D, Yoshida T, Eisaki H, Fujimori A, Kishio K, Shimoyama J I, Noda T, Uchida S, Hussain Z and Shen Z X 2001 Nature 412 510
[53] Bansil A and Lindroos M 1999 Phys. Rev. Lett. 83 5154
[20] Zhou X J, Yoshida T, Lanzara A, Bogdanov P V, Kellar S A, Shen K M, Yang W L, Ronning F, Sasagawa T, Kakeshita T, Noda T, Eisaki H, Uchida S, Lin C T, Zhou F, Xiong J W, Ti W X, Zhao Z X, Fujimori A, Hussain Z and Shen Z X 2003 Nature 423 398
[54] Zandbergen H W, Groen W A, Mijlhoff F C, Tendeloo G V and Amelinckx S 1988 Physica C 156 325
[21] Gromko A D, Fedorov A V, Chuang Y D, Koralek J D, Aiura Y, Yamaguchi Y, Oka K, Ando Y and Dessau D S 2003 Phys. Rev. B 68 174520
[55] Gai P L and Day P 1988 Physica C 152 335
[22] Kim T K, Kordyuk A A, Borisenko S V, Koitzsch A, Knupfer M, Berger H and Fink J 2003 Phys. Rev. Lett. 91 167002
[56] Zhang Y X, Hu C, Hu Y, Zhao L, Ding Y, Sun X, Liang A J, Zhang Y, He S L, Liu D F, Yu L, Liu G D, Dong X L, Gu G D, Chen C C, Xu Z Y and Zhou X J 2016 Sci. Bull. 61 1037
[23] Cuk T, Baumberger F, Lu D H, Ingle N, Zhou X J, Eisaki H, Kaneko N, Hussain Z, Devereaux T P, Nagaosa N and Shen Z X 2004 Phys. Rev. Lett. 93 117003
[57] Zhong Y G, Chen Y M, Guan J Y, Zhao J, Rao Z C, Tang C Y, Liu H J, Sun Y J and Ding H 2018 Sci. China-Phys. Mech. Astron. 61 127403
[24] Zhang W T, Liu G D, Zhao L, Liu H Y, Meng J Q, Dong X L, Lu W, Wen J S, Xu Z J, Gu G D, Sasagawa T, Wang G L, Zhu Y, Zhang H B, Zhou Y, Wang X Y, Zhao Z X, Chen C T, Xu Z Y and Zhou X J 2008 Phys. Rev. Lett. 100 107002
[58] Meng J Q, Liu G D, Zhang W T, Zhao L, Liu H Y, Lu W, Dong X L and Zhou X J 2009 Supercond. Sci. Technol. 22 045010
[25] He J F, Zhang W T, Bok J M, Mou D X, Zhao L, Peng Y Y, He S L, Liu G D, Dong X L, Zhang J, Wen J S, Xu Z J, Gu G D, Wang X Y, Peng Q J, Wang Z M, Zhang S J, Yang F, Chen C T, Xu Z Y, Choi H Y, Varma C M and Zhou X J 2013 Phys. Rev. Lett. 111 107005
[59] Chen Z, Peng Y Y, Wang Z, Song Y J, Meng J Q, Zhou X J and Li J Q 2013 Supercond. Sci. Technol. 26 055010
[26] Bok J M, Bae J J, Choi H Y, Varma C M, Zhang W T, He J F, Zhang Y X, Yu L and Zhou X J 2016 Sci. Adv. 2 e1501329
[60] Chong I, Terashima T, Bando Y, Takano M, Matsuda Y, Nagaoka T and Kumagai K 1997 Physica C 290 57
[27] Pan S H, O'Neal J P, Badzey R L, Chamon C, Ding H, Engelbrecht J R, Wang Z, Eisaki H, Uchida S, Guptak A K, Ng K W, Hudson E W, Lang K M and Davis J C 2001 Nature 413 282
[61] Mao Z Q, Fan C G, Shi L, Yao Z, Yang L, Wang Y and Zhang Y H 1993 Phys. Rev. B 47 14467
[28] Hoffman J E, Hudson E W, Lang K M, Madhavan V, Eisaki H, Uchida S and Davis J C 2002 Science 295 466
[62] Torardi C C, McCarron E M, Gai P L, Parise J B, Ghoroghchian J, Kang D B, Whangbo M H and Barry J C 1991 Physica C 176 347
[29] Kohsaka Y, Taylor C, Fujita K, Schmidt A, Lupien C, Hanaguri T, Azuma M, Takano M, Eisaki H, Takagi H, Uchida S and Davis J C 2007 Science 315 1380
[30] Hamidian M H, Edkins S D, Joo S H, Kostin A, Eisaki H, Uchida S, Lawler M J, Kim E A, Mackenzie A P, Fujita K, Lee J and Davis J C S 2016 Nature 532 343
[31] Fischer O, Kugler M, Maggio-Aprile I, Berthod C and Renner C 2007 Rev. Mod. Phys. 79 353
[32] Gao Y A N, Lee P, Coppens P, Subramania M A and Sleight A W 1988 Science 241 954
[33] Eibl O 1991 Physica C 175 419
[34] Heinrich H, Kostorz G, Heeb B and Gauckler L J 1994 Physica C 224 133
[35] Withers R L, Thompson J G, Wallenberg L R, Fitz Gerald J D, Anderson J S and Hyde B G 1988 J. Phys. C 21 6067
[36] Aebi P, Osterwalder J, Schwaller P, Schlapbach L, Shimoda M, Mochiku T and Kadowaki K 1994 Phys. Rev. Lett. 72 2757
[37] Osterwalder J, Aebi P, Schwaller P, Schlapbach L, Shimoda M, Mochiku T and Kadowaki K 1995 Appl. Phys. A 60 247
[38] Ding H, Bellman A F, Campuzano J C, Randeria M, Norman M R, Yokoya T, Takahashi T, KatayamaYoshida H, Mochiku T, Kadowaki K, Jennings G and Brivio G P 1996 Phys. Rev. Lett. 76 1533
[39] Fretwell H M, Kaminski A, Mesot J, Campuzano J C, Norman M R, Randeria M, Sato T, Gatt R, Takahashi T and Kadowaki K 2000 Phys. Rev. Lett. 84 4449
[40] Chong I, Hiroi Z, Izumi M, Shimoyama J, Nakayama Y, Kishio K, Terashima T, Bando Y and Takano M 1997 Science 276 770
[41] Fournier P, Kapitulnik A and Marshall A F 1996 Physica C 257 291
[42] Kendziora C, Qadri S B and Skelton E 1997 Phys. Rev. B 56 14717
[43] Schwaller P, Aebi P, Berger H, Beeli C, Osterwalder J and Schlapbach L 1995 J. Electron. Spectrosc. Relat. Phenom. 76 127
[44] Legner S, Borisenko S V, Durr C, Pichler T, Knupfer M, Golden M S, Fink J, Yang G, Abell S, Berger H, Muller R, Janowitz C and Reichardt G 2000 Phys. Rev. B 62 154
[45] Bogdanov P V, Lanzara A, Zhou X J, Kellar S A, Feng D L, Lu E D, Eisaki H, Shimoyama J I, Kishio K, Hussain Z and Shen Z X 2001 Phys. Rev. B 64 180505
[46] Takeuchi T, Kaga H, Okada Y, Ikuta H, Baba T, Tsuda S and Shin S 2007 J. Electron. Spectrosc. Relat. Phenom. 156 452
[47] Ziegler B, Muller B, Krapf A, Dwelk H, Janowitz C and Manzke R 2008 Phys. Rev. B 77 054520
[48] Liu S Y, Zhang W T, Zhao L, Liu H Y, Wu Y, Liu G D, Dong X L and Zhou X J 2012 Chin. Phys. Lett. 29 087401
[49] Zhang Y, Wang C L, Yu L, Liu G D, Liang A J, Huang J W, Nie S M, Sun X, Zhang Y X, Shen B, Liu J, Weng H M, Zhao L X, Chen G F, Jia X W, Hu C, Ding Y, Zhao W J, Gao Q, Li C, He S L, Zhao L, Zhang F F, Zhang S J, Yang F, Wang Z M, Peng Q J, Dai X, Fang Z, Xu Z Y, Chen C T and Zhou X J 2017 Nat. Commun. 8 15512
[50] Guo C, Tian H F, Yang H X, Zhang B, Sun K, Sun X, Peng Y Y, Zhou X J and Li J Q 2017 Phys. Rev. Mater. 1 064802
[51] Feng D L, Armitage N P, Lu D H, Damascelli A, Hu J P, Bogdanov P, Lanzara A, Ronning F, Shen K M, Eisaki H, Kim C, Shen Z X, Shimoyama J and Kishio K 2001 Phys. Rev. Lett. 86 5550
[52] Mans A, Santoso I, Huang Y, Siu W K, Tavaddod S, Arpiainen V, Lindroos M, Berger H, Strocov V N, Shi M, Patthey L and Golden M S 2006 Phys. Rev. Lett. 96 107007
[53] Bansil A and Lindroos M 1999 Phys. Rev. Lett. 83 5154
[54] Zandbergen H W, Groen W A, Mijlhoff F C, Tendeloo G V and Amelinckx S 1988 Physica C 156 325
[55] Gai P L and Day P 1988 Physica C 152 335
[56] Zhang Y X, Hu C, Hu Y, Zhao L, Ding Y, Sun X, Liang A J, Zhang Y, He S L, Liu D F, Yu L, Liu G D, Dong X L, Gu G D, Chen C C, Xu Z Y and Zhou X J 2016 Sci. Bull. 61 1037
[57] Zhong Y G, Chen Y M, Guan J Y, Zhao J, Rao Z C, Tang C Y, Liu H J, Sun Y J and Ding H 2018 Sci. China-Phys. Mech. Astron. 61 127403
[58] Meng J Q, Liu G D, Zhang W T, Zhao L, Liu H Y, Lu W, Dong X L and Zhou X J 2009 Supercond. Sci. Technol. 22 045010
[59] Chen Z, Peng Y Y, Wang Z, Song Y J, Meng J Q, Zhou X J and Li J Q 2013 Supercond. Sci. Technol. 26 055010
[60] Chong I, Terashima T, Bando Y, Takano M, Matsuda Y, Nagaoka T and Kumagai K 1997 Physica C 290 57
[61] Mao Z Q, Fan C G, Shi L, Yao Z, Yang L, Wang Y and Zhang Y H 1993 Phys. Rev. B 47 14467
[62] Torardi C C, McCarron E M, Gai P L, Parise J B, Ghoroghchian J, Kang D B, Whangbo M H and Barry J C 1991 Physica C 176 347
[1] Advancing thermoelectrics by suppressing deep-level defects in Pb-doped AgCrSe2 alloys
Yadong Wang(王亚东), Fujie Zhang(张富界), Xuri Rao(饶旭日), Haoran Feng(冯皓然),Liwei Lin(林黎蔚), Ding Ren(任丁), Bo Liu(刘波), and Ran Ang(昂然). Chin. Phys. B, 2023, 32(4): 047202.
[2] Predicting novel atomic structure of the lowest-energy FenP13-n(n=0-13) clusters: A new parameter for characterizing chemical stability
Yuanqi Jiang(蒋元祺), Ping Peng(彭平). Chin. Phys. B, 2023, 32(4): 047102.
[3] High-temperature ferromagnetism and strong π-conjugation feature in two-dimensional manganese tetranitride
Ming Yan(闫明), Zhi-Yuan Xie(谢志远), and Miao Gao(高淼). Chin. Phys. B, 2023, 32(3): 037104.
[4] Mid-infrared lightly Er3+-doped CaF2 laser under acousto-optical modulation
Yuan-Hao Zhao(赵元昊), Meng-Yu Zong(宗梦雨), Jia-Hao Dong(董佳昊), Zhen Zhang(张振), Jing-Jing Liu(刘晶晶), Jie Liu(刘杰), and Liang-Bi Su(苏良碧). Chin. Phys. B, 2023, 32(3): 034203.
[5] Modulational instability of a resonantly polariton condensate in discrete lattices
Wei Qi(漆伟), Xiao-Gang Guo(郭晓刚), Liang-Wei Dong(董亮伟), and Xiao-Fei Zhang(张晓斐). Chin. Phys. B, 2023, 32(3): 030502.
[6] Optomagnonically tunable whispering gallery cavity laser wavelength conversion
Yining Zhu(朱奕宁), Zixu Zhu(朱子虚), Anbang Pei(裴安邦), and Yong-Pan Gao(高永潘). Chin. Phys. B, 2023, 32(2): 024206.
[7] High frequency doubling efficiency THz GaAs Schottky barrier diode based on inverted trapezoidal epitaxial cross-section structure
Xiaoyu Liu(刘晓宇), Yong Zhang(张勇), Haoran Wang(王皓冉), Haomiao Wei(魏浩淼),Jingtao Zhou(周静涛), Zhi Jin(金智), Yuehang Xu(徐跃杭), and Bo Yan(延波). Chin. Phys. B, 2023, 32(1): 017305.
[8] Real-time programmable coding metasurface antenna for multibeam switching and scanning
Jia-Yu Yu(余佳宇), Qiu-Rong Zheng(郑秋容), Bin Zhang(张斌), Jie He(贺杰), Xiang-Ming Hu(胡湘明), and Jie Liu(刘杰). Chin. Phys. B, 2022, 31(9): 090704.
[9] An all-optical phase detector by amplitude modulation of the local field in a Rydberg atom-based mixer
Xiu-Bin Liu(刘修彬), Feng-Dong Jia(贾凤东), Huai-Yu Zhang(张怀宇), Jiong Mei(梅炅), Wei-Chen Liang(梁玮宸), Fei Zhou(周飞), Yong-Hong Yu(俞永宏), Ya Liu(刘娅), Jian Zhang(张剑), Feng Xie(谢锋), and Zhi-Ping Zhong(钟志萍). Chin. Phys. B, 2022, 31(9): 090703.
[10] Spatially modulated scene illumination for intensity-compensated two-dimensional array photon-counting LiDAR imaging
Jiaheng Xie(谢佳衡), Zijing Zhang(张子静), Mingwei Huang(黄明维),Jiahuan Li(李家欢), Fan Jia(贾凡), and Yuan Zhao(赵远). Chin. Phys. B, 2022, 31(9): 090701.
[11] Magnetic van der Waals materials: Synthesis, structure, magnetism, and their potential applications
Zhongchong Lin(林中冲), Yuxuan Peng(彭宇轩), Baochun Wu(吴葆春), Changsheng Wang(王常生), Zhaochu Luo(罗昭初), and Jinbo Yang(杨金波). Chin. Phys. B, 2022, 31(8): 087506.
[12] Fundamental study towards a better understanding of low pressure radio-frequency plasmas for industrial applications
Yong-Xin Liu(刘永新), Quan-Zhi Zhang(张权治), Kai Zhao(赵凯), Yu-Ru Zhang(张钰如), Fei Gao(高飞),Yuan-Hong Song(宋远红), and You-Nian Wang(王友年). Chin. Phys. B, 2022, 31(8): 085202.
[13] Propagation and modulational instability of Rossby waves in stratified fluids
Xiao-Qian Yang(杨晓倩), En-Gui Fan(范恩贵), and Ning Zhang(张宁). Chin. Phys. B, 2022, 31(7): 070202.
[14] Topological phase transition in cavity optomechanical system with periodical modulation
Zhi-Xu Zhang(张志旭), Lu Qi(祁鲁), Wen-Xue Cui(崔文学), Shou Zhang(张寿), and Hong-Fu Wang(王洪福). Chin. Phys. B, 2022, 31(7): 070301.
[15] Bandgap evolution of Mg3N2 under pressure: Experimental and theoretical studies
Gang Wu(吴刚), Lu Wang(王璐), Kuo Bao(包括), Xianli Li(李贤丽), Sheng Wang(王升), and Chunhong Xu(徐春红). Chin. Phys. B, 2022, 31(6): 066205.
No Suggested Reading articles found!