Please wait a minute...
Chin. Phys. B, 2019, Vol. 28(6): 064210    DOI: 10.1088/1674-1056/28/6/064210
ELECTROMAGNETISM, OPTICS, ACOUSTICS, HEAT TRANSFER, CLASSICAL MECHANICS, AND FLUID DYNAMICS Prev   Next  

Internal and near-surface fields for a chiral sphere under arbitrary laser beam illumination

Bi-Da Su(苏必达)1,2, Ming-Jun Wang(王明军)3, Yue Peng(彭月)2, Su-Hui Yang(杨苏辉)1, Hua-Yong Zhang(张华永)4
1 Department of Photoelectric Engineering, Beijing Institute of Technology, Beijing 100854, China;
2 Science and Technology on Optical Radiation Laboratory, Beijing 100854, China;
3 School of Automation and Information Engineering, Xi'an University of Technology, Xi'an 710048, China;
4 School of Electronics and Information Engineering, Anhui University, Hefei 230039, China
Abstract  

A general scheme for the investigation of scattering by a chiral sphere under arbitrary monochromatic laser beam illumination is presented. The scattered and internal fields are expanded by using appropriate spherical vector wave functions, and their expansion coefficients are determined by the boundary conditions and the projection method. Targeting multiple incidence forms such as Gaussian beam, Hermite-Gaussian beam, doughnut mode beam and zero-order Bessel beam, the influence and propagation of near-surface intensity field for a chiral sphere are analyzed. These properties are very important for studying the properties of chiral media, and for manipulating the optical tweezers and super-resolution imaging of particles.

Keywords:  scattering      chiral sphere      monochromatic laser beamirradiation      field intensity distribution  
Received:  20 February 2019      Revised:  01 April 2019      Accepted manuscript online: 
PACS:  42.25.Fx (Diffraction and scattering)  
  78.20.Ek (Optical activity)  
  42.55.-f (Lasers)  
  42.60.Jf (Beam characteristics: profile, intensity, and power; spatial pattern formation)  
Fund: 

Project supported by the National Natural Science Foundation of China (Grant No. 61771385) and the Industrial Research of Science and Technology Plan of Shaanxi Province, China (Grant No. 2016GY-082).

Corresponding Authors:  Ming-Jun Wang     E-mail:  wmjxd@aliyun.com

Cite this article: 

Bi-Da Su(苏必达), Ming-Jun Wang(王明军), Yue Peng(彭月), Su-Hui Yang(杨苏辉), Hua-Yong Zhang(张华永) Internal and near-surface fields for a chiral sphere under arbitrary laser beam illumination 2019 Chin. Phys. B 28 064210

[1] Bohren C F 1974 Chem. Phys. Lett 29 458
[2] Fernandez C I, Zambrana P X and Molina T G 2012 Phys. Rev. A 86 042103
[3] Gustavson T L, Chikkatur A P, Leanhardt A E, Gölitz A, Gupta S, Pritchard D E and Ketterle W 2001 Phys. Rev. Lett. 88 020401
[4] Fahrbach F O, Simon P and Rohrbach A 2010 Nat. Photon. 4 780
[5] Yokota M, He S and Takenaka T 2001 J. Opt. Soc. Am. A 18 1681
[6] Zhu X P, Liao T Q, Zhang H Y and Hui R Q 2012 JQSRT 113 1946
[7] Shang Q C, Wu Z S, Qu T, Li Z J and Bai L 2013 Opt. Express 21 8677
[8] Qu T, Wu Z S, Shang Q C and Li Z J 2016 J. Opt. Soc. Am. A 33 475
[9] Stratton J A 1941 Electromagnetic Theory (New York: McGraw-Hill) Chap. VⅡ
[10] Gouesbet G, Maheu B and Gréhan G 1988 J. Opt. Soc. Am. A 5 1427
[11] Gouesbet G 2009 JQSRT 110 1223
[12] Davis L W 1979 Phys. Rev. A 19 1177
[13] Barton J P and Alexander D R 1989 J. Appl. Phys. 66 2800
[14] Barton J P 1997 Appl. Opt. 36 1303
[15] Mishra S R 1991 Opt. Commun. 85 159
[16] Mitri F G 2011 Opt. Lett. 36 766
[1] Effects of phonon bandgap on phonon-phonon scattering in ultrahigh thermal conductivity θ-phase TaN
Chao Wu(吴超), Chenhan Liu(刘晨晗). Chin. Phys. B, 2023, 32(4): 046502.
[2] Impact of amplified spontaneous emission noise on the SRS threshold of high-power fiber amplifiers
Wei Liu(刘伟), Shuai Ren(任帅), Pengfei Ma(马鹏飞), and Pu Zhou(周朴). Chin. Phys. B, 2023, 32(3): 034202.
[3] Floquet scattering through a parity-time symmetric oscillating potential
Xuzhen Cao(曹序桢), Zhaoxin Liang(梁兆新), and Ying Hu(胡颖). Chin. Phys. B, 2023, 32(3): 030302.
[4] Temperature and strain sensitivities of surface and hybrid acoustic wave Brillouin scattering in optical microfibers
Yi Liu(刘毅), Yuanqi Gu(顾源琦), Yu Ning(宁钰), Pengfei Chen(陈鹏飞), Yao Yao(姚尧),Yajun You(游亚军), Wenjun He(贺文君), and Xiujian Chou(丑修建). Chin. Phys. B, 2022, 31(9): 094208.
[5] Integral cross sections for electron impact excitations of argon and carbon dioxide
Shu-Xing Wang(汪书兴) and Lin-Fan Zhu(朱林繁). Chin. Phys. B, 2022, 31(8): 083401.
[6] Elastic electron scattering with CH2Br2 and CCl2Br2: The role of the polarization effects
Xiaoli Zhao(赵小利) and Kedong Wang(王克栋). Chin. Phys. B, 2022, 31(8): 083402.
[7] SERS activity of carbon nanotubes modified by silver nanoparticles with different particle sizes
Xiao-Lei Zhang(张晓蕾), Jie Zhang(张洁), Yuan Luo(罗元), and Jia Ran(冉佳). Chin. Phys. B, 2022, 31(7): 077401.
[8] Structural evolution and bandgap modulation of layered β-GeSe2 single crystal under high pressure
Hengli Xie(谢恒立), Jiaxiang Wang(王家祥), Lingrui Wang(王玲瑞), Yong Yan(闫勇), Juan Guo(郭娟), Qilong Gao(高其龙), Mingju Chao(晁明举), Erjun Liang(梁二军), and Xiao Ren(任霄). Chin. Phys. B, 2022, 31(7): 076101.
[9] Oscillator strength study of the excitations of valence-shell of C2H2 by high-resolution inelastic x-ray scattering
Qiang Sun(孙强), Ya-Wei Liu(刘亚伟), Yuan-Chen Xu(徐远琛), Li-Han Wang(王礼涵), Tian-Jun Li(李天钧), Shu-Xing Wang(汪书兴), Ke Yang(杨科), and Lin-Fan Zhu(朱林繁). Chin. Phys. B, 2022, 31(5): 053401.
[10] Switchable directional scattering based on spoof core—shell plasmonic structures
Yun-Qiao Yin(殷允桥), Hong-Wei Wu(吴宏伟), Shu-Ling Cheng(程淑玲), and Zong-Qiang Sheng(圣宗强). Chin. Phys. B, 2022, 31(5): 054101.
[11] Effects of Landau damping and collision on stimulated Raman scattering with various phase-space distributions
Shanxiu Xie(谢善秀), Yong Chen(陈勇), Junchen Ye(叶俊辰), Yugu Chen(陈雨谷), Na Peng(彭娜), and Chengzhuo Xiao(肖成卓). Chin. Phys. B, 2022, 31(5): 055201.
[12] Small-angle neutron scattering study on the stability of oxide nanoparticles in long-term thermally aged 9Cr-oxide dispersion strengthened steel
Peng-Lin Gao(高朋林), Jian Gong(龚建), Qiang Tian(田强), Gung-Ai Sun(孙光爱), Hai-Yang Yan(闫海洋),Liang Chen(陈良), Liang-Fei Bai(白亮飞), Zhi-Meng Guo(郭志猛), and Xin Ju(巨新). Chin. Phys. B, 2022, 31(5): 056102.
[13] Post-solitons and electron vortices generated by femtosecond intense laser interacting with uniform near-critical-density plasmas
Dong-Ning Yue(岳东宁), Min Chen(陈民), Yao Zhao(赵耀), Pan-Fei Geng(耿盼飞), Xiao-Hui Yuan(远晓辉), Quan-Li Dong(董全力), Zheng-Ming Sheng(盛政明), and Jie Zhang(张杰). Chin. Phys. B, 2022, 31(4): 045205.
[14] Characterization of premixed swirling methane/air diffusion flame through filtered Rayleigh scattering
Meng Li(李猛), Bo Yan(闫博), Shuang Chen(陈爽), Li Chen(陈力), and Jin-He Mu(母金河). Chin. Phys. B, 2022, 31(3): 034702.
[15] High-pressure Raman study of osmium and rhenium up to 200 GPa and pressure dependent elastic shear modulus C44
Jingyi Liu(刘静仪), Yu Tao(陶雨), Chunmei Fan(范春梅), Binbin Wu(吴彬彬), Qiqi Tang(唐琦琪), and Li Lei(雷力). Chin. Phys. B, 2022, 31(3): 037801.
No Suggested Reading articles found!