Please wait a minute...
Chin. Phys. B, 2019, Vol. 28(5): 058401    DOI: 10.1088/1674-1056/28/5/058401
INTERDISCIPLINARY PHYSICS AND RELATED AREAS OF SCIENCE AND TECHNOLOGY Prev   Next  

Equivalent electromagnetic parameters for microwave metamaterial absorber using a new symmetry model

Junming Zhang(张峻铭)1, Donglin He(何东霖)1, Guowu Wang(王国武)1, Peng Wang(王鹏)1, Liang Qiao(乔亮)1, Tao Wang(王涛)1,2, Fashen Li(李发伸)1
1 Key Laboratory for Magnetism and Magnetic Materials(Ministry of Education), Lanzhou University, Lanzhou 730000, China;
2 Key Laboratory of Special Function Materials and Structure Design(Ministry of Education), Lanzhou University, Lanzhou 730000, China
Abstract  

Transmission line theory uses the complex nature of permeability and permittivity of a conventional magnetic absorber to evaluate its absorption properties and mechanism. However, because there is no method to obtain the electromagnetic parameters of a metamaterial-absorber integrated layer (composed of a medium layer and a periodic metal array), this theory is seldom used to study the absorption properties of the metamaterial absorber. We propose a symmetry model to achieve an equivalent complex permittivity and permeability model for the integrated layer, which can be combined with the transmission line theory to calculate metamaterial absorption properties. The calculation results derived from both the transmission line theory and the high-frequency structure simulator are in good agreement. This method will be beneficial in practical investigations of the absorption mechanism of a metamaterial absorber.

Keywords:  metamaterial absorber      equivalent electromagnetic parameters      transmission line theory  
Received:  23 January 2019      Revised:  04 March 2019      Accepted manuscript online: 
PACS:  84.40.-x (Radiowave and microwave (including millimeter wave) technology)  
Fund: 

Project supported by the National Natural Science Foundation of China (Grant Nos. 11574122 and 51731001), the Fundamental Research Funds for the Central Universities, China (Grant No. kzujbky-2017-k20), and the Innovation Special Zone Project of National Defence Science and Technology, China.

Corresponding Authors:  Tao Wang     E-mail:  wtao@lzu.edu.cn

Cite this article: 

Junming Zhang(张峻铭), Donglin He(何东霖), Guowu Wang(王国武), Peng Wang(王鹏), Liang Qiao(乔亮), Tao Wang(王涛), Fashen Li(李发伸) Equivalent electromagnetic parameters for microwave metamaterial absorber using a new symmetry model 2019 Chin. Phys. B 28 058401

[1] Liu J, Zhou Q, Shi Y, Zhao X and Zhang C 2013 Appl. Phys. Lett. 103 241911
[2] Bingham C M, Tao H, Landy N I, Averitt R D, Padilla W J and Zhang X 2008 Opt. Express 16 7181
[3] Wang B Y, Liu S B, Bian B R, Mao Z W, Liu X C, Ma B and Chen L 2014 J. Appl. Phys. 116 094504
[4] Zhong M, Liu S J, Xu B L, Wang J and Huang H Q 2018 Opt. Mater. 78 1
[5] Guo L, Ma X, Zou Y, Zhang R, Wang J A and Zhang D 2018 Opt. & Laser Technol. 98 247
[6] Meng T, Hu D and Zhu Q 2018 Opt. Commun. 415 151
[7] Yu Y, Christopher B, Talmage T, Sabarni P, Hand T H, Padilla W J, Smith D R, Marie J N and Cummer S A 2008 Opt. Express 16 9746
[8] Su J, Lu Y, Li Z, Zhang R and Yang Y 2016 Int. J. Antenn Propag. 2016 9
[9] Xu H, Bie S, Xu Y, Yuan W, Chen Q and Jiang J 2016 Compos. Part. A Appl. Sci. & Manuf. 80 111
[10] Shuai S, Yang S, Lu T, Yang L and Cao H 2016 Aip Adv. 6 075203
[11] Chen H T 2012 Opt. Express 20 7165
[12] Zhang J, Peng W, Chen Y, Wang G, Wang D, Liang Q, Tao W and Li F 2018 J. Electron. Mater. 47 1
[13] Wang T, Han R, Tan G, Wei J, Qiao L and Li F 2012 J. Appl. Phys. 112 104903
[14] Chen H T, Zhou J, O'Hara J F, Chen F, Azad A K and Taylor A J 2010 Phys. Rev. Lett. 105 073901
[15] Huang X, He X, Guo L, Yi Y, Xiao B and Yang H 2015 J. Opt. 17 055101
[16] Huang X, Yu S, Chen J and Yang H 2016 11th International Symposium on Antennas, Propagation and EM Theory (ISAPE) pp. 640-643
[17] Smith D R, Vier D C, Th K and Soukoulis C M 2005 Phys. Rev. E 71 036617
[18] Smith D R, Schultz S, Markos P and Soukoulis C M 2002 Phys. Rev. B 65 195104
[19] Chen X, Grzegorczyk T M, Wu B I, Pacheco J Jr. and Kong J A 2004 Phys. Rev. E 70 016608
[20] Watts C M, Liu X and Padilla W J 2012 Adv. Mater. 24 OP98
[21] Liu X, Starr T, Starr A F and Padilla W J 2010 Phys. Review Letters 104 207403
[22] Wang T, Wang H, Tan G and Wang L 2015 IEEE Trans. Magn. 51 1
[23] Wang B, Wei J, Qiao L, Wang T and Li F 2012 J. Magn. & Magn. Mater. 324 761
[1] A flexible ultra-broadband metamaterial absorber working on whole K-bands with polarization-insensitive and wide-angle stability
Tao Wang(汪涛), He-He He(何贺贺), Meng-Di Ding(丁梦迪), Jian-Bo Mao(毛剑波), Ren Sun(孙韧), and Lei Sheng(盛磊). Chin. Phys. B, 2022, 31(3): 037804.
[2] A pure dielectric metamaterial absorber with broadband and thin thickness based on a cross-hole array structure
Wenbo Cao(曹文博), Youquan Wen(温又铨), Chao Jiang(姜超), Yantao Yu(余延涛), Yiyu Wang(王艺宇), Zheyipei Ma(麻哲乂培), Zixiang Zhao(赵子翔), Lanzhi Wang(王兰志), and Xiaozhong Huang(黄小忠). Chin. Phys. B, 2022, 31(11): 117801.
[3] Retrieval of the effective constitutive parameters from metamaterial absorbers
Shaomei Shi(石邵美), Xiaojing Qiao(乔小晶), Shuo Liu(刘朔), and Weinan Liu(刘卫南). Chin. Phys. B, 2021, 30(11): 117803.
[4] Bridging the terahertz near-field and far-field observations of liquid crystal based metamaterial absorbers
Lei Wang(王磊), Shijun Ge(葛士军), Zhaoxian Chen(陈召宪), Wei Hu(胡伟), Yanqing Lu(陆延青). Chin. Phys. B, 2016, 25(9): 094222.
[5] Broadband, polarization-insensitive, and wide-angle microwave absorber based on resistive film
Dan-Dan Bu(布丹丹), Chun-Sheng Yue(岳春生), Guang-Qiu Zhang(张广求), Yong-Tao Hu(胡永涛), Sheng Dong(董胜). Chin. Phys. B, 2016, 25(6): 067802.
[6] Design of a multiband terahertz perfect absorber
Dan Hu(胡丹), Hong-yan Wang(王红燕), Zhen-jie Tang(汤振杰),Xi-wei Zhang(张希威), Lin Ju(鞠琳), Hua-ying Wang(王华英). Chin. Phys. B, 2016, 25(3): 037801.
[7] Design of a varactor-tunable metamaterial absorber
Lin Bao-Qin (林宝勤), Da Xin-Yu (达新宇), Zhao Shang-Hong (赵尚弘), Meng Wen (蒙文), Li Fan (李凡), Fang Ying-Wu (方英武), Wang Jia-Fu (王甲富). Chin. Phys. B, 2014, 23(6): 067801.
[8] Dual-band and polarization-insensitive terahertz absorber based on fractal Koch curves
Ma Yan-Bing (马岩冰), Zhang Huai-Wu (张怀武), Li Yuan-Xun (李元勋), Wang Yi-Cheng (王艺程), Lai Wei-En (赖伟恩), Li Jie (李颉). Chin. Phys. B, 2014, 23(5): 058102.
[9] Multi-band microwave metamaterial absorber based on coplanar Jerusalem crosses
Wang Guo-Dong (王国栋), Liu Ming-Hai (刘明海), Hu Xi-Wei (胡希伟), Kong Ling-Hua (孔令华), Cheng Li-Li (程莉莉), Chen Zhao-Quan (陈兆权). Chin. Phys. B, 2014, 23(1): 017802.
[10] An ultrathin wide-band planar metamaterial absorber based on fractal frequency selective surface and resistive film
Fan Yue-Nong (范跃农), Cheng Yong-Zhi (程用志), Nie Yan (聂彦), Wang Xian (王鲜), Gong Rong-Zhou (龚荣洲). Chin. Phys. B, 2013, 22(6): 067801.
[11] Tunable broadband metamaterial absorber consisting of ferrite slabs and a copper wire
Yang Yong-Jun(杨拥军), Huang Yong-Jun(黄勇军), Wen Guang-Jun(文光俊), Zhong Jing-Ping(钟靖平), Sun Hai-Bin(孙海斌), and Oghenemuero Gordon . Chin. Phys. B, 2012, 21(3): 038501.
[12] A wideband metamaterial absorber based on magnetic resonator loaded with lumped resistors
Cheng Yong-Zhi (程用志), Gong Rong-Zhou (龚荣洲), Nie Yan (聂彦), Wang Xian (王鲜). Chin. Phys. B, 2012, 21(12): 127801.
[13] A metamaterial absorber with direction-selective and polarisation-insensitive properties
Gu Chao(顾超), Qu Shao-Bo(屈绍波), Pei Zhi-Bin(裴志斌), and Xu Zhuo(徐卓). Chin. Phys. B, 2011, 20(3): 037801.
[14] Multiband terahertz metamaterial absorber
Gu Chao(顾超), Qu Shao-Bo(屈绍波), Pei Zhi-Bin(裴志斌), Xu Zhuo(徐卓), Liu Jia(刘嘉), and Gu Wei(顾巍) . Chin. Phys. B, 2011, 20(1): 017801.
No Suggested Reading articles found!