Please wait a minute...
Chin. Phys. B, 2012, Vol. 21(12): 127801    DOI: 10.1088/1674-1056/21/12/127801
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES Prev   Next  

A wideband metamaterial absorber based on magnetic resonator loaded with lumped resistors

Cheng Yong-Zhi (程用志), Gong Rong-Zhou (龚荣洲), Nie Yan (聂彦), Wang Xian (王鲜)
School of Optical and Electronic Information, Huazhong University of Science and Technology, Wuhan 430074, China
Abstract  A wideband metamaterial absorber (MA) based on a magnetic resonator loaded with lumped resistors is presented. It is composed of a one-dimensional periodic array of double U shape structured magnetic resonators loaded with lumped resistors, dielectric substrate, and metal plate. We simulated, fabricated, measured, and analyzed the MA. The experimental results show that the reflectance (S11) is below -10 dB at normal incidence in the frequency range of 7.7 GHz-18 GHz, and the peak value is about -20 dB. Simulated power loss density distributions indicate that wideband absorption of the MA is mainly attributable to the lumped resistors in the magnetic resonator. Further investigations indicate that the distance between two unit cells along the magnetic field direction significantly influences the performance of the MA.
Keywords:  wideband      metamaterial absorber      lumped resistors  
Received:  18 July 2012      Revised:  29 August 2012      Accepted manuscript online: 
PACS:  78.20.Ci (Optical constants (including refractive index, complex dielectric constant, absorption, reflection and transmission coefficients, emissivity))  
  41.20.Jb (Electromagnetic wave propagation; radiowave propagation)  
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 51207060) and the Specialized Research Fund for the Doctoral Program of Higher Education of China (Grant No. 20090142110004).
Corresponding Authors:  Nie Yan     E-mail:  nieyan@mail.hust.edu.cn

Cite this article: 

Cheng Yong-Zhi (程用志), Gong Rong-Zhou (龚荣洲), Nie Yan (聂彦), Wang Xian (王鲜) A wideband metamaterial absorber based on magnetic resonator loaded with lumped resistors 2012 Chin. Phys. B 21 127801

[1] Cai W and Shalaev V 2010 Optical Metamaterials: Fundamentals and Applications (LLC: Springer Science+Business Media)
[2] Pendry J P, Holde A J, Robbins D J and Stewart W J 1999 IEEE Trans. Microwave Theory Tech. 47 2075
[3] Smith D R, Padilla W J, Vier D C, Nemat-Nasser S C and Schultz S 2000 Phys. Rev. Lett. 84 4184
[4] Qureshi F, Antoniades M A and Eleftheriades G V 2005 IEEE Antennas Wirel. Propag. Lett. 4 333
[5] Alici K B and Ozbay E 2007 J. Appl. Phys. 101 083104
[6] Fang N, Lee H, Sun C and Zhang X 2005 Science 308 534
[7] Aydin K, Bulu I and Ozbay E 2007 Appl. Phys. Lett. 90 254102
[8] Bilotti F, Alu A, Engheta N and Vegni L 2005 Proceedings of the 2005 Nanoscience and Nanotechnology Symposium-NN, 2005, Frascati, Italy, pp. 14-16
[9] Mosallaei H and Sarabandi K 2005 Proceedings of 2005 IEEE Antennas and Propagation Society International Symposium, Vol. 1B, pp. 615-618, 39
[10] Landy N I, Sajuyigbe S, Mock J J, Smith D R and Padilla W J 2008 Phys. Rev. Lett. 100 207402
[11] Cheng Y Z and Yang H L 2010 J. Appl. Phys. 108 034906
[12] Gu S, Barrett J P, Hand T H, Popa B I and Cummer S A 2010 J. Appl. Phys. 108 064913
[13] Alici K B, Bilotti F, Vegni L and Ozbay E 2010 J. Appl. Phys. 108 083113
[14] Li L, Yang Y and Liang C 2011 J. Appl. Phys. 110 063702
[15] Huang L and Chen H S 2011 Prog. Electromagn. Res. 113 103
[16] Luo H, Cheng Y Z and Gong R Z 2011 Eur. Phys. J. B 81 387
[17] Ye Y Q, Jin Y and He S L 2010 J. Opt. Soc. Am. B 27 498
[18] Ding F, Cui Y, Ge X, Jin Y and He S 2012 Appl. Phys. Lett. 100 103506
[19] Pang Y Q, Zhou Y J and Wang J 2011 J. Appl. Phys. 110 023704
[20] Sun K L, Cheng H F, Zhou Y J and Wang J 2012 Chin. Phys. B 21 055201
[21] Gu C, Qu S B, Pei Z B, Xu Z, Bai P, Peng W D and Lin B Q 2011 Acta Phys. Sin. 60 087801 (in Chinese)
[22] Cheng Y Z, Wang Y, Nie Y, Gong R Z, Xiong X and Wang X 2012 J. Appl. Phys. 111 044902
[23] Cheng Y Z, Yang H L, Cheng Z Z and Xiao B X 2011 Photo. Nanostruct. Fund. Appl. 9 8
[24] Li T, Liu H, Wang F M, Dong Z G, Zhu S N and Zhang X 2006 Opt. Express 14 11156
[1] A flexible ultra-broadband metamaterial absorber working on whole K-bands with polarization-insensitive and wide-angle stability
Tao Wang(汪涛), He-He He(何贺贺), Meng-Di Ding(丁梦迪), Jian-Bo Mao(毛剑波), Ren Sun(孙韧), and Lei Sheng(盛磊). Chin. Phys. B, 2022, 31(3): 037804.
[2] A pure dielectric metamaterial absorber with broadband and thin thickness based on a cross-hole array structure
Wenbo Cao(曹文博), Youquan Wen(温又铨), Chao Jiang(姜超), Yantao Yu(余延涛), Yiyu Wang(王艺宇), Zheyipei Ma(麻哲乂培), Zixiang Zhao(赵子翔), Lanzhi Wang(王兰志), and Xiaozhong Huang(黄小忠). Chin. Phys. B, 2022, 31(11): 117801.
[3] Ultra-wideband surface plasmonic bandpass filter with extremely wide upper-band rejection
Xue-Wei Zhang(张雪伟), Shao-Bin Liu(刘少斌), Qi-Ming Yu(余奇明), Ling-Ling Wang(王玲玲), Kun Liao(廖昆), and Jian Lou(娄健). Chin. Phys. B, 2022, 31(11): 114101.
[4] High-confinement ultra-wideband bandpass filter using compact folded slotline spoof surface plasmon polaritons
Xue-Wei Zhang(张雪伟), Shao-Bin Liu(刘少斌), Ling-Ling Wang(王玲玲), Qi-Ming Yu (余奇明), Jian-Lou(娄健), and Shi-Ning Sun(孙世宁). Chin. Phys. B, 2022, 31(1): 014102.
[5] Characteristic mode analysis of wideband high-gain and low-profile metasurface antenna
Kun Gao(高坤), Xiang-Yu Cao(曹祥玉), Jun Gao(高军), Huan-Huan Yang(杨欢欢), and Jiang-Feng Han(韩江枫). Chin. Phys. B, 2021, 30(6): 064101.
[6] Design of sextuple-mode triple-ring HTS UWB filter using two-round interpolation
Ming-En Tian(田明恩), Zhi-He Long(龙之河), You Lan(蓝友), Lei-Lei He(贺磊磊), and Tian-Liang Zhang(张天良). Chin. Phys. B, 2021, 30(5): 058503.
[7] Retrieval of the effective constitutive parameters from metamaterial absorbers
Shaomei Shi(石邵美), Xiaojing Qiao(乔小晶), Shuo Liu(刘朔), and Weinan Liu(刘卫南). Chin. Phys. B, 2021, 30(11): 117803.
[8] Equivalent electromagnetic parameters for microwave metamaterial absorber using a new symmetry model
Junming Zhang(张峻铭), Donglin He(何东霖), Guowu Wang(王国武), Peng Wang(王鹏), Liang Qiao(乔亮), Tao Wang(王涛), Fashen Li(李发伸). Chin. Phys. B, 2019, 28(5): 058401.
[9] Ultra-wideband RCS reduction using novel configured chessboard metasurface
Ya-Qiang Zhuang(庄亚强), Guang-Ming Wang(王光明), He-Xiu Xu(许河秀). Chin. Phys. B, 2017, 26(5): 054101.
[10] Bridging the terahertz near-field and far-field observations of liquid crystal based metamaterial absorbers
Lei Wang(王磊), Shijun Ge(葛士军), Zhaoxian Chen(陈召宪), Wei Hu(胡伟), Yanqing Lu(陆延青). Chin. Phys. B, 2016, 25(9): 094222.
[11] Ultra-wideband reflective polarization converter based on anisotropic metasurface
Jia-Liang Wu(吴家梁), Bao-Qin Lin(林宝勤), Xin-Yu Da(达新宇). Chin. Phys. B, 2016, 25(8): 088101.
[12] Broadband, polarization-insensitive, and wide-angle microwave absorber based on resistive film
Dan-Dan Bu(布丹丹), Chun-Sheng Yue(岳春生), Guang-Qiu Zhang(张广求), Yong-Tao Hu(胡永涛), Sheng Dong(董胜). Chin. Phys. B, 2016, 25(6): 067802.
[13] Shannon information capacity of time reversal wideband multiple-input multiple-output system based on correlated statistical channels
Yu Yang(杨瑜), Bing-Zhong Wang(王秉中), Shuai Ding(丁帅). Chin. Phys. B, 2016, 25(5): 050101.
[14] Design of a multiband terahertz perfect absorber
Dan Hu(胡丹), Hong-yan Wang(王红燕), Zhen-jie Tang(汤振杰),Xi-wei Zhang(张希威), Lin Ju(鞠琳), Hua-ying Wang(王华英). Chin. Phys. B, 2016, 25(3): 037801.
[15] Ultra-wideband circular-polarization converter with micro-split Jerusalem-cross metasurfaces
Xi Gao(高喜), Xing-Yang Yu(余行阳), Wei-Ping Cao(曹卫平), Yan-Nan Jiang(姜彦南), Xin-Hua Yu(于新华). Chin. Phys. B, 2016, 25(12): 128102.
No Suggested Reading articles found!