Please wait a minute...
Chin. Phys. B, 2014, Vol. 23(5): 058102    DOI: 10.1088/1674-1056/23/5/058102
INTERDISCIPLINARY PHYSICS AND RELATED AREAS OF SCIENCE AND TECHNOLOGY Prev   Next  

Dual-band and polarization-insensitive terahertz absorber based on fractal Koch curves

Ma Yan-Bing (马岩冰)a, Zhang Huai-Wu (张怀武)a, Li Yuan-Xun (李元勋)a b, Wang Yi-Cheng (王艺程)a, Lai Wei-En (赖伟恩)a, Li Jie (李颉)a
a State Key Laboratory of Electronic Films and Integrated Devices, University of Electronic Science and Technology of China, Chengdu 610054, China;
b Institute of Electronic and Information Engineering, University of Electronic Science and Technology of China, Dongguan 523808, China
Abstract  We report the design, fabrication, and characterization of a dual-band and polarization-insensitive metamaterial absorber (MA), which consists of periodically arranged fractal Koch curves acting as the top resonator array and a metallic ground plane separated by a dielectric spacer. Compared with conventional MAs, a more compact size and multi-frequency operation are achieved by using fractal geometry as the unit cell of the MA. Both the effective medium theory and the multi-reflection interference theory are employed to investigate the underlying physical mechanism of the proposed terahertz MA, and results indicate that the latter theory is not suitable for explaining the absorption mechanism in our investigated structure. Two absorption peaks are observed at 0.226 THz and 0.622 THz with absorptivities of 91.3% and 95.6% respectively and good agreements between the full-wave simulation and experimental results are achieved.
Keywords:  metamaterial absorber      terahertz      fractal geometry  
Received:  09 July 2013      Revised:  28 October 2013      Accepted manuscript online: 
PACS:  81.05.Xj (Metamaterials for chiral, bianisotropic and other complex media)  
  42.25.Bs (Wave propagation, transmission and absorption)  
  42.60.Da (Resonators, cavities, amplifiers, arrays, and rings)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 60721001, 51132003, and 61171047), the National Natural Youth Fund of China (Grant No. 61001025), and the National Programs for Science and Technology Development of Guangdong Province, China (Grant No. 2010B090400314).
Corresponding Authors:  Ma Yan-Bing     E-mail:  mayanbing_uestc@163.com
About author:  81.05.Xj; 42.25.Bs; 42.60.Da

Cite this article: 

Ma Yan-Bing (马岩冰), Zhang Huai-Wu (张怀武), Li Yuan-Xun (李元勋), Wang Yi-Cheng (王艺程), Lai Wei-En (赖伟恩), Li Jie (李颉) Dual-band and polarization-insensitive terahertz absorber based on fractal Koch curves 2014 Chin. Phys. B 23 058102

[1] Landy N I, Sajuyigbe S, Mock J J, Smith D R and Padilla W J 2008 Phys. Rev. Lett. 100 207402
[2] Tao H, Bingham C M, Pilon D, Fan K, Strikwerda A C, Shrekenhamer D, Padilla W J, Zhang X and Averitt R D 2010 J. Phys. D: Appl. Phys. 43 225102
[3] Yuan Y, Bingham C M, Tyler T, Palit S, Hand T H, Padilla W J, Jokerst N M and Cummer S A 2008 Appl. Phys. Lett. 93 191110
[4] Tao H, Landy N I, Bingham C M, Zhang X, Averitt R D and Padilla W J 2008 Opt. Express 16 7181
[5] Chen H T 2012 Opt. Express 20 7165
[6] Sun L K, Cheng H F, Zhou Y J and Wang J 2012 Opt. Express 20 4675
[7] Liu L G, Wu W W, Mo J J, Fu Y Q and Yuan N C 2013 Chin. Phys. B 22 047802
[8] Wen Q Y, Zhang H W, Xie Y S, Yang Q H and Liu Y L 2009 Appl. Phys. Lett. 95 241111
[9] Gu C, Qu S B, Pei Z B, Xu Z, Liu J and Gu W 2011 Chin. Phys. B 20 017801
[10] Li H, Yuan L H, Zhou B, Shen X P, Cheng Q and Cui T J 2011 J. Appl. Phys. 110 014909
[11] Kollatou T M, Dimitriadis A I, Assimonis S D, Kantartzis N V and Antonopoulos C S 2013 Prog. Electromagn. Res. 136 579
[12] Du Q J, Liu J S, Wang K J, Yi X N and Yang H W 2011 Chin. Phys. Lett. 28 014201
[13] Li M H, Yang H L, Hou X W, Tian Y and Hou D Y 2010 Prog. Electromagn. Res. 108 37
[14] Huang X J, Yang H L, Yu S Q, Wang J X, Li M H and Ye Q W 2013 J. Appl. Phys. 113 213516
[15] Huang L and Chen H S 2011 Prog. Electromagn. Res. 113 103
[16] Miyamaru F, Saito Y, Takeda M W, Hou B, Liu L, Wen W and Sheng P 2008 Phys. Rev. B 77 045124
[17] Miyamaru F, Saito Y, Takeda M W, Liu L, Hou B, Wen W and Sheng P 2009 Appl. Phys. Lett. 95 221111
[18] Chen H T, Zhou J F, O'Hara J F, Chen F, Azad A K and Taylor A J 2010 Phys. Rev. Lett. 105 073901
[19] Born M and Wolf E 1999 Principles of Optics: Electromagnetic Theory of Propagation, Interference and Diffraction of Light (CUP Archive)
[20] Zhou J F, Chen H T, Koschny T, Azad A K, Taylor A J, Soukoulis C M and O'Hara J F 2011 arXiv:1111.0343v1 [physics.optics]
[21] Huang L, Chowdhury D R, Ramani S, Reiten M T, Luo S N, Azad A K, Taylor A J and Chen H T 2012 Appl. Phys. Lett. 101 101102
[22] Dolling G, Enkrich C, Wegener M, Soukoulis C M and Linden S 2006 Science 312 892
[23] Park J W, Van T P, Rhee J Y, Kim K W, Jang W H, Choi E H, Chen L Y and Lee Y 2013 Opt. Express 21 9691
[24] Shen X P, Yang Y, Zang Y, Gu J, Han J, Zhang W and Cui T J 2012 Appl. Phys. Lett. 101 154102
[25] Shen X P, Cui T J, Zhao J M, Ma H F, Jiang W X and Li H 2011 Opt. Express 19 9401
[26] Kuznetsov S A, Paulish A G, Gelfand A V, Lazorskiy P A and Fedorinin V N 2012 Prog. Electromagn. Res. 122 93
[27] Tao H, Bingham C M, Strikwerda A C, Pilon D, Shrekenhamer D, Landy N I, Fan K, Zhang X, Padilla W J and Averitt R D 2008 Phys. Rev. B 78 241103
[1] Intense low-noise terahertz generation by relativistic laser irradiating near-critical-density plasma
Shijie Zhang(张世杰), Weimin Zhou(周维民), Yan Yin(银燕), Debin Zou(邹德滨), Na Zhao(赵娜), Duan Xie(谢端), and Hongbin Zhuo(卓红斌). Chin. Phys. B, 2023, 32(3): 035201.
[2] Super-resolution reconstruction algorithm for terahertz imaging below diffraction limit
Ying Wang(王莹), Feng Qi(祁峰), Zi-Xu Zhang(张子旭), and Jin-Kuan Wang(汪晋宽). Chin. Phys. B, 2023, 32(3): 038702.
[3] Graphene metasurface-based switchable terahertz half-/quarter-wave plate with a broad bandwidth
Xiaoqing Luo(罗小青), Juan Luo(罗娟), Fangrong Hu(胡放荣), and Guangyuan Li(李光元). Chin. Phys. B, 2023, 32(2): 027801.
[4] High efficiency of broadband transmissive metasurface terahertz polarization converter
Qiangguo Zhou(周强国), Yang Li(李洋), Yongzhen Li(李永振), Niangjuan Yao(姚娘娟), and Zhiming Huang(黄志明). Chin. Phys. B, 2023, 32(2): 024201.
[5] High frequency doubling efficiency THz GaAs Schottky barrier diode based on inverted trapezoidal epitaxial cross-section structure
Xiaoyu Liu(刘晓宇), Yong Zhang(张勇), Haoran Wang(王皓冉), Haomiao Wei(魏浩淼),Jingtao Zhou(周静涛), Zhi Jin(金智), Yuehang Xu(徐跃杭), and Bo Yan(延波). Chin. Phys. B, 2023, 32(1): 017305.
[6] Dual-function terahertz metasurface based on vanadium dioxide and graphene
Jiu-Sheng Li(李九生) and Zhe-Wen Li(黎哲文). Chin. Phys. B, 2022, 31(9): 094201.
[7] Plasmon-induced transparency effect in hybrid terahertz metamaterials with active control and multi-dark modes
Yuting Zhang(张玉婷), Songyi Liu(刘嵩义), Wei Huang(黄巍), Erxiang Dong(董尔翔), Hongyang Li(李洪阳), Xintong Shi(石欣桐), Meng Liu(刘蒙), Wentao Zhang(张文涛), Shan Yin(银珊), and Zhongyue Luo(罗中岳). Chin. Phys. B, 2022, 31(6): 068702.
[8] Switchable terahertz polarization converter based on VO2 metamaterial
Haotian Du(杜皓天), Mingzhu Jiang(江明珠), Lizhen Zeng(曾丽珍), Longhui Zhang(张隆辉), Weilin Xu(徐卫林), Xiaowen Zhang(张小文), and Fangrong Hu(胡放荣). Chin. Phys. B, 2022, 31(6): 064210.
[9] Dynamically controlled asymmetric transmission of linearly polarized waves in VO2-integrated Dirac semimetal metamaterials
Man Xu(许曼), Xiaona Yin(殷晓娜), Jingjing Huang(黄晶晶), Meng Liu(刘蒙), Huiyun Zhang(张会云), and Yuping Zhang(张玉萍). Chin. Phys. B, 2022, 31(6): 067802.
[10] Scaled radar cross section measurement method for lossy targets via dynamically matching reflection coefficients in THz band
Shuang Pang(逄爽), Yang Zeng(曾旸), Qi Yang(杨琪), Bin Deng(邓彬), and Hong-Qiang Wang(王宏强). Chin. Phys. B, 2022, 31(6): 068703.
[11] How to realize an ultrafast electron diffraction experiment with a terahertz pump: A theoretical study
Dan Wang(王丹), Xuan Wang(王瑄), Guoqian Liao(廖国前), Zhe Zhang(张喆), and Yutong Li(李玉同). Chin. Phys. B, 2022, 31(5): 056103.
[12] Multi-function terahertz wave manipulation utilizing Fourier convolution operation metasurface
Min Zhong(仲敏) and Jiu-Sheng Li(李九生). Chin. Phys. B, 2022, 31(5): 054207.
[13] A self-powered and sensitive terahertz photodetection based on PdSe2
Jie Zhou(周洁), Xueyan Wang(王雪妍), Zhiqingzi Chen(陈支庆子), Libo Zhang(张力波), Chenyu Yao(姚晨禹), Weijie Du(杜伟杰), Jiazhen Zhang(张家振), Huaizhong Xing(邢怀中), Nanxin Fu(付南新), Gang Chen(陈刚), and Lin Wang(王林). Chin. Phys. B, 2022, 31(5): 050701.
[14] Creation of multi-frequency terahertz waves by optimized cascaded difference frequency generation
Zhong-Yang Li(李忠洋), Jia Zhao(赵佳), Sheng Yuan(袁胜), Bin-Zhe Jiao(焦彬哲), Pi-Bin Bing(邴丕彬), Hong-Tao Zhang(张红涛), Zhi-Liang Chen(陈治良), Lian Tan(谭联), and Jian-Quan Yao(姚建铨). Chin. Phys. B, 2022, 31(4): 044205.
[15] Propagation of terahertz waves in nonuniform plasma slab under "electromagnetic window"
Hao Li(李郝), Zheng-Ping Zhang(张正平), and Xin Yang (杨鑫). Chin. Phys. B, 2022, 31(3): 035202.
No Suggested Reading articles found!