Please wait a minute...
Chin. Phys. B, 2016, Vol. 25(9): 094222    DOI: 10.1088/1674-1056/25/9/094222
SPECIAL TOPIC—Physical research in liquid crystal Prev   Next  

Bridging the terahertz near-field and far-field observations of liquid crystal based metamaterial absorbers

Lei Wang(王磊)1,2, Shijun Ge(葛士军)1, Zhaoxian Chen(陈召宪)1, Wei Hu(胡伟)1, Yanqing Lu(陆延青)1
1. National Laboratory of Solid State Microstructures, Collaborative Innovation Center of Advanced Microstructures and College of Engineering and Applied Sciences, Nanjing University, Nanjing 210093, Chin;
2. School of Optoelectronic Engineering, Nanjing University of Posts and Telecommunications, Nanjing 210023, China
Abstract  Metamaterial-based absorbers play a significant role in applications ranging from energy harvesting and thermal emitters to sensors and imaging devices. The middle dielectric layer of conventional metamaterial absorbers has always been solid. Researchers could not detect the near field distribution in this layer or utilize it effectively. Here, we use anisotropic liquid crystal as the dielectric layer to realize electrically fast tunable terahertz metamaterial absorbers. We demonstrate strong, position-dependent terahertz near-field enhancement with sub-wavelength resolution inside the metamaterial absorber. We measure the terahertz far-field absorption as the driving voltage increases. By combining experimental results with liquid crystal simulations, we verify the near-field distribution in the middle layer indirectly and bridge the near-field and far-field observations. Our work opens new opportunities for creating high-performance, fast, tunable, terahertz metamaterial devices that can be applied in biological imaging and sensing.
Keywords:  liquid crystal      terahertz      metamaterial absorber      near-field and far-field properties  
Received:  18 May 2016      Accepted manuscript online: 
PACS:  42.79.Kr (Display devices, liquid-crystal devices)  
  81.05.Xj (Metamaterials for chiral, bianisotropic and other complex media)  
  42.25.Bs (Wave propagation, transmission and absorption)  
Fund: Project supported by the National Basic Research Program of China (Grant No. 2012CB921803), the National Natural Science Foundation of China (Grants Nos. 61225026, 61490714, 11304151, and 61435008), the Natural Science Foundation of Jiangsu Province, China (Grant Nos. BK20150845 and 15KJB140004), the Open Foundation Project of National Laboratory of Solid State Microstructures, China (Grant No. M28003), and the Research Center of Optical Communications Engineering & Technology, Jiangsu Province, China.
Corresponding Authors:  Yanqing Lu     E-mail:  yqlu@nju.edu.cn

Cite this article: 

Lei Wang(王磊), Shijun Ge(葛士军), Zhaoxian Chen(陈召宪), Wei Hu(胡伟), Yanqing Lu(陆延青) Bridging the terahertz near-field and far-field observations of liquid crystal based metamaterial absorbers 2016 Chin. Phys. B 25 094222

[1] Tonouchi M 2007 Nat. Photon. 1 97
[2] Ferguson B and Zhang X C 2002 Nat. Mater. 1 26
[3] Saeedkia D 2013 Handbook of Terahertz Technology for Imaging, Sensing and Communications (London: Woodhead publishing)
[4] Zhang X C and Xu J Z 2010 Introduction to THz Wave Photonics (New York: Springer)
[5] Tao H, Landy N I, Bingham C M, Zhang X, Averitt R D and Padilla W J 2008 Opt. Express 16 7181
[6] Watts C M, Shrekenhamer D, Montoya J, Lipworth G, Hunt J, Sleasman T, Krishna S, Smith D R and Padilla W J 2014 Nat. Photon. 8 605
[7] Mo M M, Wen Q Y, Chen Z, Yang Q H, Qiu D H, Li S, Jing Y L and Zhang H W 2014 Chin. Phys. B 23 047803
[8] Liu S, Chen H B and Cui T J 2015 Appl. Phys. Lett. 106 151601
[9] Wen Q Y, Zhang H W, Xie Y S, Yang Q H and Liu Y L 2009 Appl. Phys. Lett. 95 241111
[10] Grant J, Ma Y, Saha S, Khalid A and Cumming D R S 2011 Opt. Lett. 36 3476
[11] Ma Y, Chen Q, Grant J, Saha S C, Khalid A and Cumming D R S 2011 Opt. Lett. 36 945
[12] Liu X, Starr T, Starr A F and Padilla W J 2010 Phys. Rev. Lett. 104 207403
[13] Tao H, Bingham C M, Strikwerda A C, Pilon D, Shrekenhamer D, Landy N I, Fan K, Zhang X, Padilla W J and Averitt R D 2008 Phys. Rev. B 78 241103
[14] Palma C F, Todorov Y, Vasanelli A and Sirtori C 2013 Sci. Rep. 3 1361
[15] Todorov Y, Tosetto L, Teissier J, Andrews A M, Klang P, Colombelli R, Sagnes I, Strasser G and Sirtori C 2010 Opt. Express 18 13886
[16] Landy N, Sajuyigbe S, Mock J, Smith D and Padilla W J 2008 Phys. Rev. Lett. 100 207402
[17] Chen H T 2012 Opt. Express 20 7165
[18] Wen Q Y, Xie Y S, Zhang H W, Yang Q H, Li Y X and Liu Y L 2009 Opt. Express 17 20256
[19] Zhang Z C, You Z and Chu D P 2014 Light: Sci. Appl. 3 e213
[20] Lin X W, Wu J B, Hu W, Zheng Z G, Wu Z J, Zhu G, Xu F, Jin B B and Lu Y Q 2011 AIP Adv. 1 032133
[21] Yang C S, Tang T T, Chen P H, Pan R P, Yu P C and Pan C L 2014 Opt. Lett. 39 2511
[22] Wang L, Lin X W, Hu W, Shao G H, Chen P, Liang L J, Jin B B, Wu P H, Qian H, Lu Y N, Liang X, Zheng Z G and Lu Y Q 2015 Light 4 e253
[23] Shrekenhamer D, Chen W C and Padilla W J 2013 Phys. Rev. Lett. 110 177403
[24] Savo S, Shrekenhamer D and Padilla W J 2014 Adv. Opt. Mater. 2 275
[25] Isić G, Vasić B, Zografopoulos D C, Beccherelli R and Gajić R 2015 Phys. Rev. Appl. 3 064007
[26] Zografopoulos D C and Beccherelli R 2015 Sci. Rep. 5 13137
[27] Wang L, Lin X W, Liang X, Wu J B, Hu W, Zheng Z G, Jin B B, Qin Y Q and Lu Y Q 2012 Opt. Mater. Express 2 1314
[28] Schadt M, Seiberle H and Schuster A 1996 Nature 381 212
[29] Chigrinov V, Prudnikova E, Kozenkov V, Kwok H S, Akiyama H, Kawara T, Takade H and Takatsu H 2002 Liq. Cryst. 29 1321
[30] Chen C C, Chiang W F, Tsai M C, Jiang S A, Chang T H, Wang S H and Huang C Y 2015 Opt. Lett. 40 2021
[31] Khoo I C and Wu S T 1993 Optics and Nonlinear Optics of Liquid Crystals (Singapore: World Scientific)
[32] Wei B Y, Hu W, Ming Y, Xu F, Rubin S, Wang J G, Chigrinov V and Lu Y Q 2014 Adv. Mater. 26 1590
[33] Hu H C, Wei B Y, Hu W and Lu Y Q 2013 Chin. J. Liq. Cry. Disp. 28 199
[34] Tadokoro Y, Nishikawa T, Kang B, Takano K, Hangyo M and Nakajima M 2015 Opt. Lett. 40 4456
[35] Rodrigo D, Limaj O, Janner D, Etezadi D, Abajo F J G, Pruneri V and Altug H 2015 Science 349 165
[1] Intense low-noise terahertz generation by relativistic laser irradiating near-critical-density plasma
Shijie Zhang(张世杰), Weimin Zhou(周维民), Yan Yin(银燕), Debin Zou(邹德滨), Na Zhao(赵娜), Duan Xie(谢端), and Hongbin Zhuo(卓红斌). Chin. Phys. B, 2023, 32(3): 035201.
[2] Super-resolution reconstruction algorithm for terahertz imaging below diffraction limit
Ying Wang(王莹), Feng Qi(祁峰), Zi-Xu Zhang(张子旭), and Jin-Kuan Wang(汪晋宽). Chin. Phys. B, 2023, 32(3): 038702.
[3] Graphene metasurface-based switchable terahertz half-/quarter-wave plate with a broad bandwidth
Xiaoqing Luo(罗小青), Juan Luo(罗娟), Fangrong Hu(胡放荣), and Guangyuan Li(李光元). Chin. Phys. B, 2023, 32(2): 027801.
[4] High efficiency of broadband transmissive metasurface terahertz polarization converter
Qiangguo Zhou(周强国), Yang Li(李洋), Yongzhen Li(李永振), Niangjuan Yao(姚娘娟), and Zhiming Huang(黄志明). Chin. Phys. B, 2023, 32(2): 024201.
[5] High frequency doubling efficiency THz GaAs Schottky barrier diode based on inverted trapezoidal epitaxial cross-section structure
Xiaoyu Liu(刘晓宇), Yong Zhang(张勇), Haoran Wang(王皓冉), Haomiao Wei(魏浩淼),Jingtao Zhou(周静涛), Zhi Jin(金智), Yuehang Xu(徐跃杭), and Bo Yan(延波). Chin. Phys. B, 2023, 32(1): 017305.
[6] Dual-function terahertz metasurface based on vanadium dioxide and graphene
Jiu-Sheng Li(李九生) and Zhe-Wen Li(黎哲文). Chin. Phys. B, 2022, 31(9): 094201.
[7] Plasmon-induced transparency effect in hybrid terahertz metamaterials with active control and multi-dark modes
Yuting Zhang(张玉婷), Songyi Liu(刘嵩义), Wei Huang(黄巍), Erxiang Dong(董尔翔), Hongyang Li(李洪阳), Xintong Shi(石欣桐), Meng Liu(刘蒙), Wentao Zhang(张文涛), Shan Yin(银珊), and Zhongyue Luo(罗中岳). Chin. Phys. B, 2022, 31(6): 068702.
[8] Switchable terahertz polarization converter based on VO2 metamaterial
Haotian Du(杜皓天), Mingzhu Jiang(江明珠), Lizhen Zeng(曾丽珍), Longhui Zhang(张隆辉), Weilin Xu(徐卫林), Xiaowen Zhang(张小文), and Fangrong Hu(胡放荣). Chin. Phys. B, 2022, 31(6): 064210.
[9] Dynamically controlled asymmetric transmission of linearly polarized waves in VO2-integrated Dirac semimetal metamaterials
Man Xu(许曼), Xiaona Yin(殷晓娜), Jingjing Huang(黄晶晶), Meng Liu(刘蒙), Huiyun Zhang(张会云), and Yuping Zhang(张玉萍). Chin. Phys. B, 2022, 31(6): 067802.
[10] Scaled radar cross section measurement method for lossy targets via dynamically matching reflection coefficients in THz band
Shuang Pang(逄爽), Yang Zeng(曾旸), Qi Yang(杨琪), Bin Deng(邓彬), and Hong-Qiang Wang(王宏强). Chin. Phys. B, 2022, 31(6): 068703.
[11] A self-powered and sensitive terahertz photodetection based on PdSe2
Jie Zhou(周洁), Xueyan Wang(王雪妍), Zhiqingzi Chen(陈支庆子), Libo Zhang(张力波), Chenyu Yao(姚晨禹), Weijie Du(杜伟杰), Jiazhen Zhang(张家振), Huaizhong Xing(邢怀中), Nanxin Fu(付南新), Gang Chen(陈刚), and Lin Wang(王林). Chin. Phys. B, 2022, 31(5): 050701.
[12] Multi-function terahertz wave manipulation utilizing Fourier convolution operation metasurface
Min Zhong(仲敏) and Jiu-Sheng Li(李九生). Chin. Phys. B, 2022, 31(5): 054207.
[13] How to realize an ultrafast electron diffraction experiment with a terahertz pump: A theoretical study
Dan Wang(王丹), Xuan Wang(王瑄), Guoqian Liao(廖国前), Zhe Zhang(张喆), and Yutong Li(李玉同). Chin. Phys. B, 2022, 31(5): 056103.
[14] Creation of multi-frequency terahertz waves by optimized cascaded difference frequency generation
Zhong-Yang Li(李忠洋), Jia Zhao(赵佳), Sheng Yuan(袁胜), Bin-Zhe Jiao(焦彬哲), Pi-Bin Bing(邴丕彬), Hong-Tao Zhang(张红涛), Zhi-Liang Chen(陈治良), Lian Tan(谭联), and Jian-Quan Yao(姚建铨). Chin. Phys. B, 2022, 31(4): 044205.
[15] Propagation of terahertz waves in nonuniform plasma slab under "electromagnetic window"
Hao Li(李郝), Zheng-Ping Zhang(张正平), and Xin Yang (杨鑫). Chin. Phys. B, 2022, 31(3): 035202.
No Suggested Reading articles found!