SPECIAL TOPIC—Physical research in liquid crystal |
Prev
Next
|
|
|
Bridging the terahertz near-field and far-field observations of liquid crystal based metamaterial absorbers |
Lei Wang(王磊)1,2, Shijun Ge(葛士军)1, Zhaoxian Chen(陈召宪)1, Wei Hu(胡伟)1, Yanqing Lu(陆延青)1 |
1. National Laboratory of Solid State Microstructures, Collaborative Innovation Center of Advanced Microstructures and College of Engineering and Applied Sciences, Nanjing University, Nanjing 210093, Chin; 2. School of Optoelectronic Engineering, Nanjing University of Posts and Telecommunications, Nanjing 210023, China |
|
|
Abstract Metamaterial-based absorbers play a significant role in applications ranging from energy harvesting and thermal emitters to sensors and imaging devices. The middle dielectric layer of conventional metamaterial absorbers has always been solid. Researchers could not detect the near field distribution in this layer or utilize it effectively. Here, we use anisotropic liquid crystal as the dielectric layer to realize electrically fast tunable terahertz metamaterial absorbers. We demonstrate strong, position-dependent terahertz near-field enhancement with sub-wavelength resolution inside the metamaterial absorber. We measure the terahertz far-field absorption as the driving voltage increases. By combining experimental results with liquid crystal simulations, we verify the near-field distribution in the middle layer indirectly and bridge the near-field and far-field observations. Our work opens new opportunities for creating high-performance, fast, tunable, terahertz metamaterial devices that can be applied in biological imaging and sensing.
|
Received: 18 May 2016
Accepted manuscript online:
|
PACS:
|
42.79.Kr
|
(Display devices, liquid-crystal devices)
|
|
81.05.Xj
|
(Metamaterials for chiral, bianisotropic and other complex media)
|
|
42.25.Bs
|
(Wave propagation, transmission and absorption)
|
|
Fund: Project supported by the National Basic Research Program of China (Grant No. 2012CB921803), the National Natural Science Foundation of China (Grants Nos. 61225026, 61490714, 11304151, and 61435008), the Natural Science Foundation of Jiangsu Province, China (Grant Nos. BK20150845 and 15KJB140004), the Open Foundation Project of National Laboratory of Solid State Microstructures, China (Grant No. M28003), and the Research Center of Optical Communications Engineering & Technology, Jiangsu Province, China. |
Corresponding Authors:
Yanqing Lu
E-mail: yqlu@nju.edu.cn
|
Cite this article:
Lei Wang(王磊), Shijun Ge(葛士军), Zhaoxian Chen(陈召宪), Wei Hu(胡伟), Yanqing Lu(陆延青) Bridging the terahertz near-field and far-field observations of liquid crystal based metamaterial absorbers 2016 Chin. Phys. B 25 094222
|
[1] |
Tonouchi M 2007 Nat. Photon. 1 97
|
[2] |
Ferguson B and Zhang X C 2002 Nat. Mater. 1 26
|
[3] |
Saeedkia D 2013 Handbook of Terahertz Technology for Imaging, Sensing and Communications (London: Woodhead publishing)
|
[4] |
Zhang X C and Xu J Z 2010 Introduction to THz Wave Photonics (New York: Springer)
|
[5] |
Tao H, Landy N I, Bingham C M, Zhang X, Averitt R D and Padilla W J 2008 Opt. Express 16 7181
|
[6] |
Watts C M, Shrekenhamer D, Montoya J, Lipworth G, Hunt J, Sleasman T, Krishna S, Smith D R and Padilla W J 2014 Nat. Photon. 8 605
|
[7] |
Mo M M, Wen Q Y, Chen Z, Yang Q H, Qiu D H, Li S, Jing Y L and Zhang H W 2014 Chin. Phys. B 23 047803
|
[8] |
Liu S, Chen H B and Cui T J 2015 Appl. Phys. Lett. 106 151601
|
[9] |
Wen Q Y, Zhang H W, Xie Y S, Yang Q H and Liu Y L 2009 Appl. Phys. Lett. 95 241111
|
[10] |
Grant J, Ma Y, Saha S, Khalid A and Cumming D R S 2011 Opt. Lett. 36 3476
|
[11] |
Ma Y, Chen Q, Grant J, Saha S C, Khalid A and Cumming D R S 2011 Opt. Lett. 36 945
|
[12] |
Liu X, Starr T, Starr A F and Padilla W J 2010 Phys. Rev. Lett. 104 207403
|
[13] |
Tao H, Bingham C M, Strikwerda A C, Pilon D, Shrekenhamer D, Landy N I, Fan K, Zhang X, Padilla W J and Averitt R D 2008 Phys. Rev. B 78 241103
|
[14] |
Palma C F, Todorov Y, Vasanelli A and Sirtori C 2013 Sci. Rep. 3 1361
|
[15] |
Todorov Y, Tosetto L, Teissier J, Andrews A M, Klang P, Colombelli R, Sagnes I, Strasser G and Sirtori C 2010 Opt. Express 18 13886
|
[16] |
Landy N, Sajuyigbe S, Mock J, Smith D and Padilla W J 2008 Phys. Rev. Lett. 100 207402
|
[17] |
Chen H T 2012 Opt. Express 20 7165
|
[18] |
Wen Q Y, Xie Y S, Zhang H W, Yang Q H, Li Y X and Liu Y L 2009 Opt. Express 17 20256
|
[19] |
Zhang Z C, You Z and Chu D P 2014 Light: Sci. Appl. 3 e213
|
[20] |
Lin X W, Wu J B, Hu W, Zheng Z G, Wu Z J, Zhu G, Xu F, Jin B B and Lu Y Q 2011 AIP Adv. 1 032133
|
[21] |
Yang C S, Tang T T, Chen P H, Pan R P, Yu P C and Pan C L 2014 Opt. Lett. 39 2511
|
[22] |
Wang L, Lin X W, Hu W, Shao G H, Chen P, Liang L J, Jin B B, Wu P H, Qian H, Lu Y N, Liang X, Zheng Z G and Lu Y Q 2015 Light 4 e253
|
[23] |
Shrekenhamer D, Chen W C and Padilla W J 2013 Phys. Rev. Lett. 110 177403
|
[24] |
Savo S, Shrekenhamer D and Padilla W J 2014 Adv. Opt. Mater. 2 275
|
[25] |
Isić G, Vasić B, Zografopoulos D C, Beccherelli R and Gajić R 2015 Phys. Rev. Appl. 3 064007
|
[26] |
Zografopoulos D C and Beccherelli R 2015 Sci. Rep. 5 13137
|
[27] |
Wang L, Lin X W, Liang X, Wu J B, Hu W, Zheng Z G, Jin B B, Qin Y Q and Lu Y Q 2012 Opt. Mater. Express 2 1314
|
[28] |
Schadt M, Seiberle H and Schuster A 1996 Nature 381 212
|
[29] |
Chigrinov V, Prudnikova E, Kozenkov V, Kwok H S, Akiyama H, Kawara T, Takade H and Takatsu H 2002 Liq. Cryst. 29 1321
|
[30] |
Chen C C, Chiang W F, Tsai M C, Jiang S A, Chang T H, Wang S H and Huang C Y 2015 Opt. Lett. 40 2021
|
[31] |
Khoo I C and Wu S T 1993 Optics and Nonlinear Optics of Liquid Crystals (Singapore: World Scientific)
|
[32] |
Wei B Y, Hu W, Ming Y, Xu F, Rubin S, Wang J G, Chigrinov V and Lu Y Q 2014 Adv. Mater. 26 1590
|
[33] |
Hu H C, Wei B Y, Hu W and Lu Y Q 2013 Chin. J. Liq. Cry. Disp. 28 199
|
[34] |
Tadokoro Y, Nishikawa T, Kang B, Takano K, Hangyo M and Nakajima M 2015 Opt. Lett. 40 4456
|
[35] |
Rodrigo D, Limaj O, Janner D, Etezadi D, Abajo F J G, Pruneri V and Altug H 2015 Science 349 165
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|