Please wait a minute...
Chin. Phys. B, 2013, Vol. 22(6): 067801    DOI: 10.1088/1674-1056/22/6/067801
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES Prev   Next  

An ultrathin wide-band planar metamaterial absorber based on fractal frequency selective surface and resistive film

Fan Yue-Nong (范跃农)a b, Cheng Yong-Zhi (程用志)a, Nie Yan (聂彦)a, Wang Xian (王鲜)a, Gong Rong-Zhou (龚荣洲)a
a School of Optical and Electronic Information, Huazhong University of Science and Technology, Wuhan 430074, China;
b Department of Mechanical and Electronic Engineering, Jingdezhen Ceramic Institute, Jingdezhen 333403, China
Abstract  We propose an ultrathin wide-band metamaterial absorber (MA) based on Minkowski (MIK) fractal frequency selective surface (FSS) and resistive films. This absorber consists of a periodic arrangement of dielectric substrate sandwiched with MIK fractal loop structure electric resonator and resistive film. The finite element method (FEM) is used to simulate and analyze the absorption of MA. Compared with the MA backed copper film, the designed MA backed resistive film exhibits an absorption of 90% in a frequency region of 2 GHz-20 GHz. The power loss density distribution of MA is further illustrated to explain the mechanism of proposed MA. Simulated absorptions in different cases of incidence indicate that this absorber is polarization-insensitive and of wide-angle. Finally, the further simulated results indicate that surface resistance of resistive film and dielectric constant of substrate can affect the absorbing property of the MA. This absorber may be used in many military fields.
Keywords:  wide-band      metamaterial absorber      fractal frequency selective surface      resistive films  
Received:  29 August 2012      Revised:  30 October 2012      Accepted manuscript online: 
PACS:  78.20.Ci (Optical constants (including refractive index, complex dielectric constant, absorption, reflection and transmission coefficients, emissivity))  
  41.20.Jb (Electromagnetic wave propagation; radiowave propagation)  
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 51207060) and the Specialized Research Fund for the Doctoral Program of Higher Education of China (Grant No. 20090142110004).
Corresponding Authors:  Cheng Yong-Zhi     E-mail:  cyz0715@126.com

Cite this article: 

Fan Yue-Nong (范跃农), Cheng Yong-Zhi (程用志), Nie Yan (聂彦), Wang Xian (王鲜), Gong Rong-Zhou (龚荣洲) An ultrathin wide-band planar metamaterial absorber based on fractal frequency selective surface and resistive film 2013 Chin. Phys. B 22 067801

[1] Veselago V G 1968 Sov. Phys. Usp. 10 509
[2] Shelby R A, Smith D R and Schultz S 2001 Science 292 177
[3] Pendry J B 2000 Phys. Rev. Lett. 85 3966
[4] Pendry J B, Schurig D and Smith D R 2006 Science 312 1780
[5] Schurig D, Mock J J, Justice B J, Cummer S A, Pendry J B, Starr A F and Smith D R 2006 Science 314 977
[6] Landy N I, Sajuyigbe S, Mock J J, Smith D R and Padilla W J 2008 Phys. Rev. Lett. 100 2074021
[7] Cheng Y Z, Yang H L, Cheng Z Z and Wu N 2011 Appl. Phys. A: Mater. Sci. Process. 102 99
[8] Li M H, Yang H L, Hou X W, Tian Y and Hou D Y 2010 Progress in Electromagnetics Research 108 37
[9] Bilotti F, Alu A, Engheta N and Vegni L 2005 in: Proceedings of the Nanoscience and Nanotechnology Symposium-NN 2005, Frascati, Italy, p. 4
[10] Mosallaei H and Sarabandi K 2005 IEEE Antennas and Propagation Society International Symposium, 2005, p. 615
[11] Landy N I, Bingham C M, Tyler T, Jokerst N, Smith D R and Padilla W J 2009 Phys. Rev. B 79 125104
[12] Liu X L, Tatiana S, Starr A F and Padilla W J 2010 Phys. Rev. Lett. 104 207403
[13] Hu C G and Luo X G 2009 Opt. Express 17 19
[14] Gu S, Barrett J P, Hand T H, Popa B I and Cummer S A 2010 J. Appl. Phys. 108 064913
[15] Gu C, Qu S B, Pei Z B, Zhou H, Xu Z, Bai P, Peng W D and Lin B Q 2010 Chin. Phys. Lett. 27 117802
[16] Mias C and Yap J H 2007 IEEE Trans. Anten. Propag. 55 1955
[17] Costa F, Monorchio A and Manara G 2007 Proc. IEEE International Symposium on Antennas and Propagation, June 10-15, 2007, Honolulu, Hawaii, USA, p. 861
[18] Liu H T, Cheng H F, Chu Z Y and Zhang D Y 2007 Materials & Design 28 2166
[19] Filippo C, Agostino M and Giuliano M 2010 IEEE Trans. Anten. Propag. 58 1551
[20] Pang Y Q, Zhou Y J and Wang J 2011 J. Appl. Phys. 110 023704
[21] Liao Z Q, Gong R Z, Nie Y, Wang T and Wang X 2011 Photon. Nanostruct. Fundam. Appl. 9 287
[22] Sun L Q, Cheng H F, Zhou Y J and Wang J 2012 Chin. Phys. B 21 055201
[23] Yang Y J, Cui Y J, Wen G J, Zhong J P, Sun H B and Oghenemuero G 2012 Chin. Phys. B 21 038501
[24] Cheng Y Z, Wang Y, Nie Y, Zheng D H, Gong R Z, Xiong X and Wang X 2012 Acta Phys. Sin. 61 134103 (in Chinese)
[1] First-principles study of the bandgap renormalization and optical property of β-LiGaO2
Dangqi Fang(方党旗). Chin. Phys. B, 2023, 32(4): 047101.
[2] A flexible ultra-broadband metamaterial absorber working on whole K-bands with polarization-insensitive and wide-angle stability
Tao Wang(汪涛), He-He He(何贺贺), Meng-Di Ding(丁梦迪), Jian-Bo Mao(毛剑波), Ren Sun(孙韧), and Lei Sheng(盛磊). Chin. Phys. B, 2022, 31(3): 037804.
[3] A pure dielectric metamaterial absorber with broadband and thin thickness based on a cross-hole array structure
Wenbo Cao(曹文博), Youquan Wen(温又铨), Chao Jiang(姜超), Yantao Yu(余延涛), Yiyu Wang(王艺宇), Zheyipei Ma(麻哲乂培), Zixiang Zhao(赵子翔), Lanzhi Wang(王兰志), and Xiaozhong Huang(黄小忠). Chin. Phys. B, 2022, 31(11): 117801.
[4] Retrieval of the effective constitutive parameters from metamaterial absorbers
Shaomei Shi(石邵美), Xiaojing Qiao(乔小晶), Shuo Liu(刘朔), and Weinan Liu(刘卫南). Chin. Phys. B, 2021, 30(11): 117803.
[5] Equivalent electromagnetic parameters for microwave metamaterial absorber using a new symmetry model
Junming Zhang(张峻铭), Donglin He(何东霖), Guowu Wang(王国武), Peng Wang(王鹏), Liang Qiao(乔亮), Tao Wang(王涛), Fashen Li(李发伸). Chin. Phys. B, 2019, 28(5): 058401.
[6] Bridging the terahertz near-field and far-field observations of liquid crystal based metamaterial absorbers
Lei Wang(王磊), Shijun Ge(葛士军), Zhaoxian Chen(陈召宪), Wei Hu(胡伟), Yanqing Lu(陆延青). Chin. Phys. B, 2016, 25(9): 094222.
[7] Broadband, polarization-insensitive, and wide-angle microwave absorber based on resistive film
Dan-Dan Bu(布丹丹), Chun-Sheng Yue(岳春生), Guang-Qiu Zhang(张广求), Yong-Tao Hu(胡永涛), Sheng Dong(董胜). Chin. Phys. B, 2016, 25(6): 067802.
[8] Design of a multiband terahertz perfect absorber
Dan Hu(胡丹), Hong-yan Wang(王红燕), Zhen-jie Tang(汤振杰),Xi-wei Zhang(张希威), Lin Ju(鞠琳), Hua-ying Wang(王华英). Chin. Phys. B, 2016, 25(3): 037801.
[9] Design of a varactor-tunable metamaterial absorber
Lin Bao-Qin (林宝勤), Da Xin-Yu (达新宇), Zhao Shang-Hong (赵尚弘), Meng Wen (蒙文), Li Fan (李凡), Fang Ying-Wu (方英武), Wang Jia-Fu (王甲富). Chin. Phys. B, 2014, 23(6): 067801.
[10] Dual-band and polarization-insensitive terahertz absorber based on fractal Koch curves
Ma Yan-Bing (马岩冰), Zhang Huai-Wu (张怀武), Li Yuan-Xun (李元勋), Wang Yi-Cheng (王艺程), Lai Wei-En (赖伟恩), Li Jie (李颉). Chin. Phys. B, 2014, 23(5): 058102.
[11] Multi-band microwave metamaterial absorber based on coplanar Jerusalem crosses
Wang Guo-Dong (王国栋), Liu Ming-Hai (刘明海), Hu Xi-Wei (胡希伟), Kong Ling-Hua (孔令华), Cheng Li-Li (程莉莉), Chen Zhao-Quan (陈兆权). Chin. Phys. B, 2014, 23(1): 017802.
[12] Tunable broadband metamaterial absorber consisting of ferrite slabs and a copper wire
Yang Yong-Jun(杨拥军), Huang Yong-Jun(黄勇军), Wen Guang-Jun(文光俊), Zhong Jing-Ping(钟靖平), Sun Hai-Bin(孙海斌), and Oghenemuero Gordon . Chin. Phys. B, 2012, 21(3): 038501.
[13] A wideband metamaterial absorber based on magnetic resonator loaded with lumped resistors
Cheng Yong-Zhi (程用志), Gong Rong-Zhou (龚荣洲), Nie Yan (聂彦), Wang Xian (王鲜). Chin. Phys. B, 2012, 21(12): 127801.
[14] A metamaterial absorber with direction-selective and polarisation-insensitive properties
Gu Chao(顾超), Qu Shao-Bo(屈绍波), Pei Zhi-Bin(裴志斌), and Xu Zhuo(徐卓). Chin. Phys. B, 2011, 20(3): 037801.
[15] Multiband terahertz metamaterial absorber
Gu Chao(顾超), Qu Shao-Bo(屈绍波), Pei Zhi-Bin(裴志斌), Xu Zhuo(徐卓), Liu Jia(刘嘉), and Gu Wei(顾巍) . Chin. Phys. B, 2011, 20(1): 017801.
No Suggested Reading articles found!