Please wait a minute...
Chin. Phys. B, 2019, Vol. 28(5): 058501    DOI: 10.1088/1674-1056/28/5/058501
INTERDISCIPLINARY PHYSICS AND RELATED AREAS OF SCIENCE AND TECHNOLOGY Prev   Next  

Responsivity and noise characteristics of AlGaN/GaN-HEMT terahertz detectors at elevated temperatures

Zhi-Feng Tian(田志锋)1,2,3,5, Peng Xu(徐鹏)1,4, Yao Yu(余耀)1,5, Jian-Dong Sun(孙建东)1, Wei Feng(冯伟)1,6, Qing-Feng Ding(丁青峰)1,2, Zhan-Wei Meng(孟占伟)1,4, Xiang Li(李想)1,6, Jin-Hua Cai(蔡金华)1, Zhong-Xin Zheng(郑中信)7, Xin-Xing Li(李欣幸)1, Lin Jin(靳琳)1, Hua Qin(秦华)1,2,5, Yun-Fei Sun(孙云飞)8
1 Key Laboratory of Nano Devices and Applications, Suzhou Institute of Nano-tech and Nano-bionics, Chinese Academy of Sciences, Suzhou 215123, China;
2 School of Physical Science and Technology, ShanghaiTech University, Shanghai 200000, China;
3 Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai 200000, China;
4 Nano Science and Technology Institute, University of Science and Technology of China, Hefei 230026, China;
5 University of Chinese Academy of Sciences, Beijing 100049, China;
6 School of Nano Technology and Nano Bionics, University of Science and Technology of China, Hefei 230026, China;
7 Beijing Huahang Radio Measurement & Research Institute, Beijing 100013, China;
8 College of Electronic and Information Engineering, Suzhou University of Sciences and Technology, Suzhou 215009, China
Abstract  

The responsivity and the noise of a detector determine the sensitivity. Thermal energy usually affects both the responsivity and the noise spectral density. In this work, the noise characteristics and responsivity of an antenna-coupled AlGaN/GaN high-electron-mobility-transistor (HEMT) terahertz detector are evaluated at temperatures elevated from 300 K to 473 K. Noise spectrum measurement and a simultaneous measurement of the source-drain conductance and the terahertz photocurrent allow for detailed analysis of the electrical characteristics, the photoresponse, and the noise behavior. The responsivity is reduced from 59 mA/W to 11 mA/W by increasing the detector temperature from 300 K to 473 K. However, the noise spectral density maintains rather constantly around 1-2 pA/Hz1/2 at temperatures below 448 K, above which the noise spectrum abruptly shifts from Johnson-noise type into flicker-noise type and the noise density is increased up to one order of magnitude. The noise-equivalent power (NEP) is increased from 22 pW/Hz1/2 at 300 K to 60 pW/Hz1/2 at 448 K mainly due to the reduction in mobility. Above 448 K, the NEP is increased up to 1000 pW/Hz1/2 due to the strongly enhanced noise. The sensitivity can be recovered by cooling the detector back to room temperature.

Keywords:  terahertz detection      gallium nitride      noise spectrum      responsivity  
Received:  17 January 2019      Revised:  27 February 2019      Accepted manuscript online: 
PACS:  85.60.Gz (Photodetectors (including infrared and CCD detectors))  
  72.80.Ey (III-V and II-VI semiconductors)  
  81.40.Gh (Other heat and thermomechanical treatments)  
  87.50.U-  
Fund: 

Project supported by the National Key Research and Development Program of China (Grant No. 2016YFF0100501), the National Natural Science Foundation of China (Grant Nos. 61771466, 61775231, and 61611530708), the Six Talent Peaks Project of Jiangsu Province, China (Grant No. XXRJ-079), and the Youth Innovation Promotion Association of Chinese Academy of Sciences (Grant No. 2017372).

Corresponding Authors:  Jian-Dong Sun, Hua Qin     E-mail:  jdsun2008@sinano.ac.cn;hqin2007@sinano.ac.cn

Cite this article: 

Zhi-Feng Tian(田志锋), Peng Xu(徐鹏), Yao Yu(余耀), Jian-Dong Sun(孙建东), Wei Feng(冯伟), Qing-Feng Ding(丁青峰), Zhan-Wei Meng(孟占伟), Xiang Li(李想), Jin-Hua Cai(蔡金华), Zhong-Xin Zheng(郑中信), Xin-Xing Li(李欣幸), Lin Jin(靳琳), Hua Qin(秦华), Yun-Fei Sun(孙云飞) Responsivity and noise characteristics of AlGaN/GaN-HEMT terahertz detectors at elevated temperatures 2019 Chin. Phys. B 28 058501

[1] Kleine-Ostmann T and Nagatsuma T 2011 Journal Infrared, Millimeter, and Terahertz Waves 32 143
[2] Siegel P H 2004 Microwave Symposium Digest, IEEE MTT-S International 3 1575
[3] Falconer R J and Markelz A G 2012 J. Infrared Millimeterand THz Waves 33 973
[4] Dhillon S S, Vitiello M S, Linfield E H, et al. 2017 J. Phys. D: Appl. Phys. 50 04300101
[5] Son J H 2009 J. Appl. Phys. 105 1020331
[6] Echternach P M, Stone K J, Bradford C M, Day P K and Wilson D K 2013 Appl. Phys. Lett. 103 053510
[7] Levinshtein M E, Rumyantsev R L, Gaska R, Yang J W and Shur M S 1998 Appl. Phys. Lett. 73 1089
[8] Balandin A, Cai S, Li R, Wang K L, Rao V R and Viswanathan C R 1998 IEEE Electron Device Lett. 19 475
[9] Levinshtein M E, Rumyantsev S L, Gaska R, Yang J W and Shur M S 1998 Appl. Phys. Lett. 73 1089
[10] Sakong S H, Lee S H, Rim T, Jo Y W, Lee J H and Jeong Y H 2015 IEEE Electron Device Lett. 36 229
[11] Hou H W, Liu Z, Teng J H, Palacios T and Chua S J 2017 Sci. Rep. 7 46664
[12] Qin H, Li X, Sun J D, Zhang Z P, Sun Y F, Yu Y, Li X X and Luo M C 2017 Appl. Phys. Lett. 110 171109
[13] Hou H W, Liu Z H, Teng J H, Palacios T and Chua S J 2017 Appl. Phys. Express. 10 014101
[14] Sun J D, Sun Y F, Wu D M, Cai Y, Qin H and Zhang B S 2012 Appl. Phys. Lett. 100 013506
[15] Yang X X, Sun J D, Qin H, Lv L, Su L N, Yan B, Li X X, Zhang Z P and Fang J Y 2015 Chin. Phys. B 24 047206
[16] Li X, Sun J D, Zhang Z P, Popov V V and Qin H 2018 Chin. Phys. B 27 068506
[17] Daumiller I, Kirchner C, Kamp M, Ebeling K J and Kohn E 1999 IEEE Electron Device Lett. 20 448
[18] Abderrahmane A, Koide S, Okada H, Takahashi H, Sato S, Ohshima T and Sandhu A 2013 Appl. Phys. Lett. 102 193510
[19] Daumiller I, Versan A, Heinle U, Scholz F and Kohn E 1997 Proceedings of Advanced Concepts in High Speed Semiconductor Devices and Circuits, August 4-6, 1997 Ithaca, NY, USA, p. 227
[20] Tan W S, Uren M J, Fry P W, Houston P A, Balmer R S and Martin T 2006 Solid-state Electron. 50 511
[21] Knap W, Kachorovskii V, Deng V, Rumyantsev S, Lü J Q, Gaska R, Shur M S, Simin G, Hu X, AsifKhan M, Saylor C A and Brunel L C 2002 J. Appl. Phys. 91 9346
[1] Review of a direct epitaxial approach to achieving micro-LEDs
Yuefei Cai(蔡月飞), Jie Bai(白洁), and Tao Wang(王涛). Chin. Phys. B, 2023, 32(1): 018508.
[2] Self-screening of the polarized electric field in wurtzite gallium nitride along [0001] direction
Qiu-Ling Qiu(丘秋凌), Shi-Xu Yang(杨世旭), Qian-Shu Wu(吴千树), Cheng-Lang Li(黎城朗), Qi Zhang(张琦), Jin-Wei Zhang(张津玮), Zhen-Xing Liu(刘振兴), Yuan-Tao Zhang(张源涛), and Yang Liu(刘扬). Chin. Phys. B, 2022, 31(4): 047103.
[3] Effect of heavy ion irradiation on the interface traps of AlGaN/GaN high electron mobility transistors
Zheng-Zhao Lin(林正兆), Ling Lü(吕玲), Xue-Feng Zheng(郑雪峰), Yan-Rong Cao(曹艳荣), Pei-Pei Hu(胡培培), Xin Fang(房鑫), and Xiao-Hua Ma(马晓华). Chin. Phys. B, 2022, 31(3): 036103.
[4] Protection of isolated and active regions in AlGaN/GaN HEMTs using selective laser annealing
Mingchen Hou(侯明辰), Gang Xie(谢刚), Qing Guo(郭清), and Kuang Sheng(盛况). Chin. Phys. B, 2021, 30(9): 097302.
[5] High-responsivity solar-blind photodetector based on MOCVD-grown Si-doped β-Ga2O3 thin film
Yu-Song Zhi(支钰崧), Wei-Yu Jiang(江为宇), Zeng Liu(刘增), Yuan-Yuan Liu(刘媛媛), Xu-Long Chu(褚旭龙), Jia-Hang Liu(刘佳航), Shan Li(李山), Zu-Yong Yan(晏祖勇), Yue-Hui Wang(王月晖), Pei-Gang Li(李培刚), Zhen-Ping Wu(吴真平), and Wei-Hua Tang(唐为华). Chin. Phys. B, 2021, 30(5): 057301.
[6] Graphene/SrTiO3 interface-based UV photodetectors with high responsivity
Heng Yue(岳恒), Anqi Hu(胡安琪), Qiaoli Liu(刘巧莉), Huijun Tian(田慧军), Chengri Hu(胡成日), Xiansong Ren(任显松), Nianyu Chen(陈年域), Chen Ge(葛琛), Kuijuan Jin(金奎娟), and Xia Guo(郭霞). Chin. Phys. B, 2021, 30(3): 038502.
[7] Modeling, simulations, and optimizations of gallium oxide on gallium-nitride Schottky barrier diodes
Tao Fang(房涛), Ling-Qi Li(李灵琪), Guang-Rui Xia(夏光睿), and Hong-Yu Yu(于洪宇). Chin. Phys. B, 2021, 30(2): 027301.
[8] High performance Cu2O film/ZnO nanowires self-powered photodetector by electrochemical deposition
Deshuang Guo(郭德双), Wei Li(李微), Dengkui Wang(王登魁), Bingheng Meng(孟兵恒), Dan Fang(房丹), Zhipeng Wei(魏志鹏). Chin. Phys. B, 2020, 29(9): 098504.
[9] A high performance fast-Fourier-transform spectrum analyzer for measuring spin noise spectrums
Yu Tong(仝煜), Lin Wang(王淋), Wen-Zhe Zhang(张闻哲), Ming-Dong Zhu(朱明东), Xi Qin(秦熙), Min Jiang(江敏), Xing Rong(荣星), Jiangfeng Du(杜江峰). Chin. Phys. B, 2020, 29(9): 090704.
[10] Effect of overdrive voltage on PBTI trapping behavior in GaN MIS-HEMT with LPCVD SiNx gate dielectric
Tao-Tao Que(阙陶陶), Ya-Wen Zhao(赵亚文), Liu-An Li(李柳暗), Liang He(何亮), Qiu-Ling Qiu(丘秋凌), Zhen-Xing Liu(刘振兴), Jin-Wei Zhang(张津玮), Jia Chen(陈佳), Zhi-Sheng Wu(吴志盛), Yang Liu(刘扬). Chin. Phys. B, 2020, 29(3): 037201.
[11] A 2DEG back-gated graphene/AlGaN deep-ultraviolet photodetector with ultrahigh responsivity
Jinhui Gao(高金辉), Yehao Li(李叶豪), Yuxuan Hu(胡宇轩), Zhitong Wang(王志通), Anqi Hu(胡安琪), and Xia Guo(郭霞)\ccclink. Chin. Phys. B, 2020, 29(12): 128502.
[12] Evaluation of stress voltage on off-state time-dependent breakdown for GaN MIS-HEMT with SiNx gate dielectric
Tao-Tao Que(阙陶陶), Ya-Wen Zhao(赵亚文), Qiu-Ling Qiu(丘秋凌), Liu-An Li(李柳暗), Liang He(何亮), Jin-Wei Zhang(张津玮), Chen-Liang Feng(冯辰亮), Zhen-Xing Liu(刘振兴), Qian-Shu Wu(吴千树), Jia Chen(陈佳), Cheng-Lang Li(黎城朗), Qi Zhang(张琦), Yun-Liang Rao(饶运良), Zhi-Yuan He(贺致远), and Yang Liu (刘扬)†. Chin. Phys. B, 2020, 29(10): 107201.
[13] Fabrication and characterization of one-port surface acoustic wave resonators on semi-insulating GaN substrates
Xue Ji(吉雪), Wen-Xiu Dong(董文秀), Yu-Min Zhang(张育民), Jian-Feng Wang(王建峰), Ke Xu(徐科). Chin. Phys. B, 2019, 28(6): 067701.
[14] Tunable 2H-TaSe2 room-temperature terahertz photodetector
Jin Wang(王瑾), Cheng Guo(郭程), Wanlong Guo(郭万龙), Lin Wang(王林), Wangzhou Shi(石旺舟), Xiaoshuang Chen(陈效双). Chin. Phys. B, 2019, 28(4): 046802.
[15] Mechanism of Ti/Al/Ni/Au ohmic contacts to AlGaN/GaN heterostructures via laser annealing
Mingchen Hou(侯明辰), Gang Xie(谢刚), Kuang Sheng(盛况). Chin. Phys. B, 2019, 28(3): 037302.
No Suggested Reading articles found!