Please wait a minute...
Chin. Phys. B, 2019, Vol. 28(5): 057401    DOI: 10.1088/1674-1056/28/5/057401
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES Prev   Next  

Tunable superconductivity in parent cuprate Pr2CuOδ thin films

Xinjian Wei(魏鑫健)1,2, Ge He(何格)1,2, Wei Hu(胡卫)1,2, Xu Zhang(张旭)1,2, Mingyang Qin(秦明阳)1,2, Jie Yuan(袁洁)1,3, Beiyi Zhu(朱北沂)1, Yuan Lin(林媛)4, Kui Jin(金魁)1,2,3,5
1 Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China;
2 School of Physical Sciences, University of Chinese Academy of Sciences, Beijing 100049, China;
3 Songshan Lake Materials Laboratory, Guangdong 523808, China;
4 State Key Laboratory of Electronic Thin Films and Integrated Devices & Center for Information in Medicine, University of Electronic Science and Technology of China, Chengdu 610054, China;
5 Collaborative Innovation Center of Quantum Matter, Beijing 100190, China
Abstract  

We studied the role of oxygen in Pr2CuOδ thin films fabricated by the polymer assisted deposition method. The magnetoresistance and Hall resistivity of Pr2CuOδ samples were systematically investigated. It was found that with decreasing oxygen content, the low-temperature Hall coefficient (RH) and magnetoresistance changed from negative to positive, similar to those with the increase of Ce-doped concentration in R2-xCexCuO4 (R=La, Nd, Pr, Sm, Eu). In addition, we observed that the dependence of the superconducting critical temperature Tc with RH for the Pr2-xCexCuO4 perfectly overlapped with that of Pr2CuOδ. These findings point to the fact that the doped electrons induced by the oxygen removal are responsible for the superconductivity of the T'-phase parent compounds.

Keywords:  Pr2CuOδ thin film      superconductivity      polymer assisted deposition  
Received:  08 January 2019      Revised:  21 February 2019      Accepted manuscript online: 
PACS:  74.72.Ek (Electron-doped)  
  81.15.-z (Methods of deposition of films and coatings; film growth and epitaxy)  
  73.50.-h (Electronic transport phenomena in thin films)  
Fund: 

Project supported by the National Key Basic Research Program of China (Grant Nos. 2015CB921000, 2016YFA0300301, 2017YFA0303003, and 2018YFB0704100), the National Natural Science Foundation of China (Grant Nos. 11674374 and 11474338), the Key Research Program of Frontier Sciences of the Chinese Academy of Sciences (Grant No. QYZDB-SSW-SLH008), the Strategic Priority Research Program of the Chinese Academy of Sciences (Grants Nos. XDB07020100 and XDB07030200), and the Beijing Municipal Science and Technology Project, China (Grant No. Z161100002116011).

Corresponding Authors:  Kui Jin     E-mail:  kuijin@iphy.ac.cn

Cite this article: 

Xinjian Wei(魏鑫健), Ge He(何格), Wei Hu(胡卫), Xu Zhang(张旭), Mingyang Qin(秦明阳), Jie Yuan(袁洁), Beiyi Zhu(朱北沂), Yuan Lin(林媛), Kui Jin(金魁) Tunable superconductivity in parent cuprate Pr2CuOδ thin films 2019 Chin. Phys. B 28 057401

[1] Lee P A, Nagaosa N and Wen X G 2006 Rev. Mod. Phys. 78 17
[2] Armitage N P, Fournier P and Greene R L 2010 Rev. Mod. Phys. 82 2421
[3] Brinkmann M, Rex T, Bach H and Westerholt K 1995 Phys. Rev. Lett. 74 4927
[4] Matsumoto O, Utsuki A, Tsukada A, Yamamoto H, Manabe T and Naito M 2008 Physica C 468 1148
[5] Chanda G, Lobo R P S M, Schachinger E, Wosnitza J, Naito M and Pronin A V 2014 Phy. Rev. B 90 024503
[6] Wei H I, Adamo C, Nowadnick E A, Lochocki E B, Chatterjee S, Ruf J P, Beasley M R, Schlom D G and Shen K M 2016 Phys. Rev. Lett. 117 147002
[7] Weber C, Haule K and Kotliar G 2010 Nat. Phys. 6 574
[8] Weber C, Haule K and Kotliar G 2010 Phys. Rev. B 82 125107
[9] Jin K, Zhang X H, Bach P and Greene R L 2009 Phys. Rev. B 80 012501
[10] Jin K, Butch N P, Kirshenbaum K, Paglione J and Greene R L 2011 Nature 476 73
[11] Dagan Y, Barr M C, Fisher W M, Beck R, Dhakal T, Biswas A and Greene R L 2005 Phys. Rev. Lett. 94 057005
[12] Dagan Y, Qazilbash M M, Hill C P, Kulkarni V N and Greene R L 2004 Phys. Rev. Lett. 92 167001
[13] Zhang X, Yu H S, He G, Hu W, Yuan J, Zhu B Y and Jin K 2016 Physica C 525 18
[14] Yamamoto H, Matsumoto O, Tsukada A and Naito M 2010 Physica C 470 1025
[15] Yamamoto H, Matsumoto O, Krockenberger Y, Yamagami K and Naito M 2011 Solid State Commun. 151 771
[16] Jia Q X, McCleskey T M, Burrell A K, Lin Y, Collis G E, Wang H, Li A D and Foltyn S R 2004 Nat. Mater. 3 529
[17] Burrell A K, McCleskey T Mark and Jia Q X 2008 Chem.Commun. (Camb) 11 1271
[18] Matsumoto O, Utsuki A, Tsukada A, Yamamoto H, Manabe T and Naito M 2009 Phys. Rev. B 79 100508
[19] Finkelman S, Sachs M, Droulers G, Butch N P, Paglione J, Bach P, Greene R L and Dagan Y 2010 Phys. Rev. B 82 094508
[20] Charpentier S, Roberge G, Godin-Proulx S, Bechamp-Laganiere X, Truong K D, Fournier P and Rauwel P 2010 Phys. Rev. B 81 104509
[21] Lin J and Millis A J 2005 Phys. Rev. B 72 214506
[22] Sarkar T, Mandal P R, Higgins J S, Zhao Y, Yu H, Jin K and Greene R L 2017 Phys. Rev. B 96 155449
[23] Horio M, Krockenberger Y, Yamamoto K, Yokoyama Y, Takubo K, Hirata Y, Sakamoto S, Koshiishi K, Yasui A, Ikenaga E, Shin S, Yamamoto H, Wadati H and Fujimori A 2018 Phys. Rev. Lett. 120 257001
[24] Song D, Han G, Kyung W, Seo J, Cho S, Kim B S, Arita M, Shimada K, Namatame H, Taniguchi M, Yoshida Y, Eisaki H, Park S R and Kim C 2017 Phys. Rev. Lett. 118 137001
[25] Jin K, Hu W, Zhu B, Kim D, Yuan J, Sun Y, Xiang T, Fuhrer M S, Takeuchi I and Greene R L 2016 Sci. Rep. 6 26642
[26] Li P, Balakirev F F and Greene R L 2007 Phys. Rev. Lett. 99 047003
[27] Altshuler B L, Aronov A G and Lee P A 1980 Phys. Rev. Lett. 44 1288
[1] Enhanced topological superconductivity in an asymmetrical planar Josephson junction
Erhu Zhang(张二虎) and Yu Zhang(张钰). Chin. Phys. B, 2023, 32(4): 040307.
[2] Superconductivity in epitaxially grown LaVO3/KTaO3(111) heterostructures
Yuan Liu(刘源), Zhongran Liu(刘中然), Meng Zhang(张蒙), Yanqiu Sun(孙艳秋), He Tian(田鹤), and Yanwu Xie(谢燕武). Chin. Phys. B, 2023, 32(3): 037305.
[3] Pressure-induced stable structures and physical properties of Sr-Ge system
Shuai Han(韩帅), Shuai Duan(段帅), Yun-Xian Liu(刘云仙), Chao Wang(王超), Xin Chen(陈欣), Hai-Rui Sun(孙海瑞), and Xiao-Bing Liu(刘晓兵). Chin. Phys. B, 2023, 32(1): 016101.
[4] Superconducting properties of the C15-type Laves phase ZrIr2 with an Ir-based kagome lattice
Qing-Song Yang(杨清松), Bin-Bin Ruan(阮彬彬), Meng-Hu Zhou(周孟虎), Ya-Dong Gu(谷亚东), Ming-Wei Ma(马明伟), Gen-Fu Chen(陈根富), and Zhi-An Ren(任治安). Chin. Phys. B, 2023, 32(1): 017402.
[5] Superconductivity and unconventional density waves in vanadium-based kagome materials AV3Sb5
Hui Chen(陈辉), Bin Hu(胡彬), Yuhan Ye(耶郁晗), Haitao Yang(杨海涛), and Hong-Jun Gao(高鸿钧). Chin. Phys. B, 2022, 31(9): 097405.
[6] Mottness, phase string, and high-Tc superconductivity
Jing-Yu Zhao(赵靖宇) and Zheng-Yu Weng(翁征宇). Chin. Phys. B, 2022, 31(8): 087104.
[7] High-pressure study of topological semimetals XCd2Sb2 (X = Eu and Yb)
Chuchu Zhu(朱楚楚), Hao Su(苏豪), Erjian Cheng(程二建), Lin Guo(郭琳), Binglin Pan(泮炳霖), Yeyu Huang(黄烨煜), Jiamin Ni(倪佳敏), Yanfeng Guo(郭艳峰), Xiaofan Yang(杨小帆), and Shiyan Li(李世燕). Chin. Phys. B, 2022, 31(7): 076201.
[8] Structural evolution and molecular dissociation of H2S under high pressures
Wen-Ji Shen(沈文吉), Tian-Xiao Liang(梁天笑), Zhao Liu(刘召), Xin Wang(王鑫), De-Fang Duan(段德芳), Hong-Yu Yu(于洪雨), and Tian Cui(崔田). Chin. Phys. B, 2022, 31(7): 076102.
[9] Surface electron doping induced double gap opening in Td-WTe2
Qi-Yuan Li(李启远), Yang-Yang Lv(吕洋洋), Yong-Jie Xu(徐永杰), Li Zhu(朱立), Wei-Min Zhao(赵伟民), Yanbin Chen(陈延彬), and Shao-Chun Li(李绍春). Chin. Phys. B, 2022, 31(6): 066802.
[10] Superconductivity in CuIr2-xAlxTe4 telluride chalcogenides
Dong Yan(严冬), Lingyong Zeng(曾令勇), Yijie Zeng(曾宜杰), Yishi Lin(林一石), Junjie Yin(殷俊杰), Meng Wang(王猛), Yihua Wang(王熠华), Daoxin Yao(姚道新), and Huixia Luo(罗惠霞). Chin. Phys. B, 2022, 31(3): 037406.
[11] Topological superconductivity in Janus monolayer transition metal dichalcogenides
Xian-Dong Li(李现东), Zuo-Dong Yu(余作东), Wei-Peng Chen(陈伟鹏), and Chang-De Gong(龚昌德). Chin. Phys. B, 2022, 31(11): 110304.
[12] Synthesis and properties of La1-xSrxNiO3 and La1-xSrxNiO2
Mengwu Huo(霍梦五), Zengjia Liu(刘增家), Hualei Sun(孙华蕾), Lisi Li(李历斯), Hui Lui(刘晖), Chaoxin Huang(黄潮欣), Feixiang Liang(梁飞翔), Bing Shen(沈冰), and Meng Wang(王猛). Chin. Phys. B, 2022, 31(10): 107401.
[13] Recent advances in quasi-2D superconductors via organic molecule intercalation
Mengzhu Shi(石孟竹), Baolei Kang(康宝蕾), Tao Wu(吴涛), and Xianhui Chen(陈仙辉). Chin. Phys. B, 2022, 31(10): 107403.
[14] Synthesis and superconductivity in yttrium superhydrides under high pressure
Yingying Wang(王莹莹), Kui Wang(王奎), Yao Sun(孙尧), Liang Ma(马良), Yanchao Wang(王彦超), Bo Zou(邹勃), Guangtao Liu(刘广韬), Mi Zhou(周密), and Hongbo Wang(王洪波). Chin. Phys. B, 2022, 31(10): 106201.
[15] Superconductivity in octagraphene
Jun Li(李军) and Dao-Xin Yao(姚道新). Chin. Phys. B, 2022, 31(1): 017403.
No Suggested Reading articles found!