Please wait a minute...
Chin. Phys. B, 2019, Vol. 28(5): 057102    DOI: 10.1088/1674-1056/28/5/057102
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES Prev   Next  

Mechanism of free electron concentration saturation phenomenon in Te-GaSb single crystal

Ding Yu(余丁)1,2, Guiying Shen(沈桂英)1, Hui Xie(谢辉)1, Jingming Liu(刘京明)1, Jing Sun(孙静)1,2, Youwen Zhao(赵有文)1,3
1 Key Laboratory of Semiconductor Materials Science and Beijing Key Laboratory of Low-Dimensional Semiconductor Materials and Devices, Institute of Semiconductors, Chinese Academy of Sciences, Beijing 100083, China;
2 University of Chinese Academy of Sciences, Beijing 100049, China;
3 Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
Abstract  

Te-doped GaSb single crystal grown by the liquid encapsulated Czochralski (LEC) method exhibits a lag of compensating progress and a maximum carrier concentration around 8×1017 cm-3. The reason for this phenomenon has been investigated by a quantity concentration evaluation of the Te donor and native acceptor. The results of glow discharge mass spectrometry (GDMS) and Hall measurement suggest that the acceptor concentration increases with the increase of Te doping concentration, resulting in the enhancement of electrical compensation and free electron concentration reduction. The acceptor concentration variation is further demonstrated by photoluminescence spectra and explained by the principle of Fermi level dependent defect formation energy.

Keywords:  GaSb      defect compensation      Hall effect measurement      photoluminescence spectroscopy  
Received:  25 January 2019      Revised:  28 February 2019      Accepted manuscript online: 
PACS:  71.55.Eq (III-V semiconductors)  
  78.55.Cr (III-V semiconductors)  
  81.05.Ea (III-V semiconductors)  
  81.70.Jb (Chemical composition analysis, chemical depth and dopant profiling)  
Fund: 

Project supported by the National Natural Science Foundation of China (Grant Nos. 61474104 and 61504131).

Corresponding Authors:  Youwen Zhao     E-mail:  zhaoyw@semi.ac.cn

Cite this article: 

Ding Yu(余丁), Guiying Shen(沈桂英), Hui Xie(谢辉), Jingming Liu(刘京明), Jing Sun(孙静), Youwen Zhao(赵有文) Mechanism of free electron concentration saturation phenomenon in Te-GaSb single crystal 2019 Chin. Phys. B 28 057102

[1] Dutta P S, Bhat H L and Kumar V 1997 J. Appl. Phys. 81 5821
[2] Sifferman S D, Nair H P, Salas R, Sheehan N T, Maddox S J, Crook A M and Bank S R 2015 IEEE J. Sel. Top. Quantum Electron. 21 1
[3] Tang L, Fraas L M, Liu Z, Xu C and Chen X 2015 IEEE Trans. Electron. Devices 62 2809
[4] Juang B C, Laghumavarapu R B, Foggo B J, Simmonds P J, Lin A, Liang B and Huffaker D L 2015 Appl. Phys. Lett. 106 111101
[5] Pusz W, Kowalewski A, Martyniuk P, Plis E, Krishna S and Rogalski A 2014 Opt. Eng. 53 043107
[6] Khvostikov V P, Sorokina S V, Soldatenkov F Y and Timoshina N K 2015 Semiconductors 49 1079
[7] Quentin G, Meriam T, Tong N B, Laurent C, Guilhem B, Rol, T, Alexei B, Yves R and Aurore V 2015 Opt. Express 23 19118
[8] Motyka M, Ryczko K, Sek G, Janiak F, Misiewicz J, Bauer A, Höfling S and Forchel A 2012 Opt. Mater. 34 1107
[9] Sun L, Wang L, Lu J L, Liu J, Fang J, Xie L L, Hao Z B, Jia H Q, Wang W X and Chen H 2018 Chin. Phys. B 27 047209
[10] Vlasov A S, Rakova E P, Khvostikov V P, Sorokina S V, Kalinovsky V S, Shvarts M Z and Andreev V M 2010 Sol. Energy Mater. Sol. Cells 94 1113
[11] Hu W G, Wang Z, Su B F, Dai Y Q, Wang S J and Zhao Y W 2004 Phys. Lett. A 332 286
[12] Baxter R D, Reid F J and Beer A C 1967 Phys. Rev. 162 718
[13] Kujala J, Segercrantz N, Tuomisto F and Slotte J 2014 J. Appl. Phys. 116 143508
[14] Ling C C, Mui W K, Lam C H, Beling C D, Fung S, Lui M K, Cheah K W, Li K F, Zhao Y W and Gong M 2002 Appl. Phys. Lett. 80 3934
[15] Kujala J, Slotte J and Tuomisto F 2013 The 16th International Conference on Positron Annihilation, August 19-24, 2012, Bristol, United Kingdom, p. 012042
[16] Kainosho K, Shimakura H, Yamamoto H and Oda O 1991 Appl. Phys. Lett. 59 932
[17] Gútai L 1980 Acta. Phy. Acad. Sci. Hung. 48 119
[18] Wang D K, Liu X, Tang J L, Fang X, Fang D, Li J H, Wang X H, Chen R and Wei Z P 2018 J. Lumin. 197 266
[19] Roodenko K, Liao P K, Lan D, Clark K P, Fraser E D, Vargason K W, Kuo J M, Kao Y C and Pinsukanjana P R 2016 J. Appl. Phys. 119 135701
[20] Scheil E 1942 Z. Metallk. 34 70
[21] Müller G 1988 Cryst. Growth From Melt (1st Edn.) (Berlin: Springer-Verlag) p. 57
[22] Sunder W A, Barns R L, Kometani T Y, Jr J M P and Laudise R A 1986 J. Cryst. Growth 78 9
[23] Lui M K and Ling C C 2005 Semicond. Sci. Technol. 20 1157
[24] Virkkala V, Havu V, Tuomisto F and Puska M J 2012 Phys. Rev. B 86 085134
[25] Hakala M, Puska M J and Nieminen R M 2002 J. Appl. Phys. 91 4988
[26] Chandola A, Pino R and Dutta P S 2005 Semicond. Sci. Technol. 20 886
[27] Meulen Y J V D 1967 J. Phys. Chem. Solids 28 25
[28] Dutta P S, Prasad V, Bhat H L and Kumar V 1996 J. Appl. Phys. 80 2847
[29] Bignazzi A, Bosacchi A and Magnanini R 1997 J. Appl. Phys. 81 7540
[30] Wu M C and Chen C C 1993 J. Appl. Phys. 73 8495
[31] Su J, Liu T, Liu J M, Yang J, Bai Y B, Shen G Y, Dong Z Y, Wang F F and Zhao Y W 2016 Chin. Phys. B 25 077801
[32] Wu M C and Chen C C 1992 J. Appl. Phys. 72 4275
[33] Burstein E 1954 Phys. Rev. 93 632
[1] Growth of high material quality InAs/GaSb type-II superlattice for long-wavelength infrared range by molecular beam epitaxy
Fang-Qi Lin(林芳祁), Nong Li(李农), Wen-Guang Zhou(周文广), Jun-Kai Jiang(蒋俊锴), Fa-Ran Chang(常发冉), Yong Li(李勇), Su-Ning Cui(崔素宁), Wei-Qiang Chen(陈伟强), Dong-Wei Jiang(蒋洞微), Hong-Yue Hao(郝宏玥), Guo-Wei Wang(王国伟), Ying-Qiang Xu(徐应强), and Zhi-Chuan Niu(牛智川). Chin. Phys. B, 2022, 31(9): 098504.
[2] Heterogeneous integration of GaSb layer on (100) Si substrate by ion-slicing technique
Ren-Jie Liu(刘仁杰), Jia-Jie Lin(林家杰), Zheng-Hao Shen(沈正皓), Jia-Liang Sun(孙嘉良), Tian-Gui You(游天桂), Jin Li(李进), Min Liao(廖敏), and Yi-Chun Zhou(周益春). Chin. Phys. B, 2022, 31(7): 076103.
[3] Wet etching and passivation of GaSb-based very long wavelength infrared detectors
Xue-Yue Xu(许雪月), Jun-Kai Jiang(蒋俊锴), Wei-Qiang Chen(陈伟强), Su-Ning Cui(崔素宁), Wen-Guang Zhou(周文广), Nong Li(李农), Fa-Ran Chang(常发冉), Guo-Wei Wang(王国伟), Ying-Qiang Xu(徐应强), Dong-Wei Jiang(蒋洞微), Dong-Hai Wu(吴东海), Hong-Yue Hao(郝宏玥), and Zhi-Chuan Niu(牛智川). Chin. Phys. B, 2022, 31(6): 068503.
[4] Interface effect on superlattice quality and optical properties of InAs/GaSb type-II superlattices grown by molecular beam epitaxy
Zhaojun Liu(刘昭君), Lian-Qing Zhu(祝连庆), Xian-Tong Zheng(郑显通), Yuan Liu(柳渊), Li-Dan Lu(鹿利单), and Dong-Liang Zhang(张东亮). Chin. Phys. B, 2022, 31(12): 128503.
[5] Strain-tuned magnetic properties in (Ga,Fe)Sb: First-principles study
Feng-Chun Pan(潘凤春), Xue-Ling Lin(林雪玲), and Xu-Ming Wang(王旭明). Chin. Phys. B, 2021, 30(9): 096105.
[6] Growth of high quality InSb thin films on GaAs substrates by molecular beam epitaxy method with AlInSb/GaSb as compound buffer layers
Yong Li(李勇), Xiao-Ming Li(李晓明), Rui-Ting Hao(郝瑞亭), Jie Guo(郭杰), Yu Zhuang(庄玉), Su-Ning Cui(崔素宁), Guo-Shuai Wei(魏国帅), Xiao-Le Ma(马晓乐), Guo-Wei Wang(王国伟), Ying-Qiang Xu(徐应强), Zhi-Chuan Niu(牛智川), and Yao Wang(王耀). Chin. Phys. B, 2021, 30(2): 028504.
[7] A method to extend wavelength into middle-wavelength infrared based on InAsSb/(Al)GaSb interband transition quantum well infrared photodetector
Xuan-Zhang Li(李炫璋), Ling Sun(孙令), Jin-Lei Lu(鲁金蕾), Jie Liu(刘洁), Chen Yue(岳琛), Li-Li Xie(谢莉莉), Wen-Xin Wang(王文新), Hong Chen(陈弘), Hai-Qiang Jia(贾海强), Lu Wang(王禄). Chin. Phys. B, 2020, 29(3): 038504.
[8] Short-wavelength infrared InAs/GaSb superlattice hole avalanche photodiode
Jia-Feng Liu(刘家丰), Ning-Tao Zhang(张宁涛), Yan Teng(滕), Xiu-Jun Hao(郝修军), Yu Zhao(赵宇), Ying Chen(陈影), He Zhu(朱赫), Hong Zhu(朱虹), Qi-Hua Wu(吴启花), Xin Li(李欣), Bai-Le Chen(陈佰乐)§, and Yong Huang(黄勇). Chin. Phys. B, 2020, 29(11): 117301.
[9] High quantum efficiency long-/long-wave dual-color type-Ⅱ InAs/GaSb infrared detector
Zhi Jiang(蒋志), Yao-Yao Sun(孙姚耀), Chun-Yan Guo(郭春妍), Yue-Xi Lv(吕粤希), Hong-Yue Hao(郝宏玥), Dong-Wei Jiang(蒋洞微), Guo-Wei Wang(王国伟), Ying-Qiang Xu(徐应强), Zhi-Chuan Niu(牛智川). Chin. Phys. B, 2019, 28(3): 038504.
[10] High quality 2-μm GaSb-based optically pumped semiconductor disk laser grown by molecular beam epitaxy
Jin-Ming Shang(尚金铭), Jian Feng(冯健), Cheng-Ao Yang(杨成奥), Sheng-Wen Xie(谢圣文), Yi Zhang(张一), Cun-Zhu Tong(佟存柱), Yu Zhang(张宇), Zhi-Chuan Niu(牛智川). Chin. Phys. B, 2019, 28(3): 034202.
[11] A review on MBE-grown HgCdSe infrared materials on GaSb (211)B substrates
Z K Zhang, W W Pan, J L Liu, W Lei. Chin. Phys. B, 2019, 28(1): 018103.
[12] Room-temperature operating extended short wavelength infrared photodetector based on interband transition of InAsSb/GaSb quantum well
Ling Sun(孙令), Lu Wang(王禄), Jin-Lei Lu(鲁金蕾), Jie Liu(刘洁), Jun Fang(方俊), Li-Li Xie(谢莉莉), Zhi-Biao Hao(郝智彪), Hai-Qiang Jia(贾海强), Wen-Xin Wang(王文新), Hong Chen(陈弘). Chin. Phys. B, 2018, 27(4): 047209.
[13] Room-temperature continuous-wave interband cascade laser emitting at 3.45 μm
Yi Zhang(张一), Fu-Hui Shao(邵福会), Cheng-Ao Yang(杨成奥), Sheng-Wen Xie(谢圣文), Shu-Shan Huang(黄书山), Ye Yuan(袁野), Jin-Ming Shang(尚金铭), Yu Zhang(张宇), Ying-Qiang Xu(徐应强), Hai-Qiao Ni(倪海桥), Zhi-Chuan Niu(牛智川). Chin. Phys. B, 2018, 27(12): 124207.
[14] Performance of dual-band short- or mid-wavelength infrared photodetectors based on InGaAsSb bulk materials and InAs/GaSb superlattices
Yao-yao Sun(孙姚耀), Yue-xi Lv(吕粤希), Xi Han(韩玺), Chun-yan Guo(郭春妍), Zhi Jiang(蒋志), Hong-yue Hao(郝宏玥), Dong-wei Jiang(蒋洞微), Guo-wei Wang(王国伟), Ying-qiang Xu(徐应强), Zhi-chuan Niu(牛智川). Chin. Phys. B, 2017, 26(9): 098506.
[15] Investigation of the surface orientation influence on 10-nm double gate GaSb nMOSFETs
Shaoyan Di(邸绍岩), Lei Shen(沈磊), Zhiyuan Lun(伦志远), Pengying Chang(常鹏鹰), Kai Zhao(赵凯), Tiao Lu(卢朓), Gang Du(杜刚), Xiaoyan Liu(刘晓彦). Chin. Phys. B, 2017, 26(4): 047201.
No Suggested Reading articles found!