Please wait a minute...
Chin. Phys. B, 2019, Vol. 28(3): 036101    DOI: 10.1088/1674-1056/28/3/036101
CONDENSED MATTER: STRUCTURAL, MECHANICAL, AND THERMAL PROPERTIES Prev   Next  

Physical properties of B4N4-I and B4N4-Ⅱ: First-principles study

Zhenyang Ma(马振洋), Peng Wang(王鹏), Fang Yan(阎芳), Chunlei Shi(史春蕾), Yi Tian(田毅)
Key Laboratory of Civil Aircraft Airworthiness Technology, Civil Aircraft Airworthiness and Repair Key Laboratory of Tianjin, School of Airworthiness, Civil Aviation University of China, Tianjin 300300, China
Abstract  

The structural, mechanical, electronic, mechanical anisotropy, and thermal properties of boron nitride (BN) polymorphs, such as B4N4-I and B4N4-Ⅱ, are investigated under ambient pressure utilizing first-principles generalized gradient approximation calculations using an ultrasoft pseudopotential scheme. The phonon spectra and elastic constants reveal that B4N4-I is dynamically and mechanically stable at the pressure of 0 GPa and temperature of 0 K. Anisotropic calculations indicate that both B4N4-I and B4N4-Ⅱ exhibit higher anisotropy of Young's modulus than cubic BN (c-BN). B4N4-Ⅱ and B4N4-I present indirect and wide band gaps of 5.32 eV and 4.86 eV, respectively. In addition, B4N4-I is more brittle than B4N4-Ⅱ. Moreover, the minimum thermal conductivity, κmin, of B4N4-Ⅱ at 300 K is 1.92 W/(cm·K), which is slightly higher than those of B4N4-I and c-BN (1.84 W/(cm·K) and 1.83 W/(cm·K), respectively. However, κmin of B4N4-I is slightly higher than that of c-BN.

Keywords:  BN polymorphs      mechanical properties      electronic properties      mechanical anisotropic properties  
Received:  09 September 2018      Revised:  20 December 2018      Accepted manuscript online: 
PACS:  61.50.-f (Structure of bulk crystals)  
  61.50.Ah (Theory of crystal structure, crystal symmetry; calculations and modeling)  
  71.20.Nr (Semiconductor compounds)  
  71.55.Cn (Elemental semiconductors)  
Fund: 

Project supported by the National Natural Science Foundation of China (Grant No. 61601468), the Fundamental Research Funds for the Central Universities, China (Grant No. 3122014C024), and the Fund for Scholars of Civil Aviation of the University of China (Grant No. 2013QD06X).

Corresponding Authors:  Peng Wang     E-mail:  wangpengcauc@163.com

Cite this article: 

Zhenyang Ma(马振洋), Peng Wang(王鹏), Fang Yan(阎芳), Chunlei Shi(史春蕾), Yi Tian(田毅) Physical properties of B4N4-I and B4N4-Ⅱ: First-principles study 2019 Chin. Phys. B 28 036101

[1] Wentorf R H 1957 J. Chem. Phys. 26 956
[2] Ma Z Y, Han Z, Liu X H, Yu X H, Wang D Y and Tian Y 2016 Nanomaterials 7 3
[3] Hromadová L and Martoňák R 2011 Phys. Rev. B 84 224108
[4] Kuzubov A A, Tikhonova L V and Fedorov A S 2014 Phys. Status Solidi B 251 1282
[5] Germaneau E, Su G and Zheng Q R 2013 J. Phys.: Condens. Matter 25 125504
[6] Fan Q Y, Wei Q, Yan H Y, Zhang M G, Zhang Z X, Zhang J Q and Zhang D Y 2014 Comput. Mater. Sci. 85 80
[7] Li Z P and Gao F M 2012 Phys. Chem. Chem. Phys. 14 869
[8] Jiang X, Zhao J J and Ahuja R 2013 J. Phys.: Condens. Matter 25 122204
[9] Dai J, Wu X J, Yang J L and Zeng X C 2014 J. Phys. Chem. Lett. 5 393
[10] Doll K, Schön J C and Jansen M 2008 Phys. Rev. B 78 144110
[11] Tang X, Hao J and Li Y W 2015 Phys. Chem. Chem. Phys. 17 27821
[12] Reshak A H, Khan S A and Auluckc S 2014 RSC Adv. 4 11967
[13] Wang X L 2012 J. Chem. Phys. 137 184506
[14] Wang X L, Bao K, Tian F B, Meng X, Chen C B, Dong B W, Li D, Liu B B and Cui T 2010 J. Chem. Phys. 133 044512
[15] Gong Y T, Li M M and Wang Y 2015 ChemSusChem 8 931
[16] Fan Q Y, Chai C C, Wei Q and Yang Y T 2016 Materials 9 427
[17] Mo S D, Ouyang L, Ching W Y, Tanaka I, Koyama Y and Riedel R 1999 Phys. Rev. Lett. 83 5046
[18] Qiao L P and Jin Z 2017 Materials 10 1413
[19] Zhang M G, Yan H Y, Zheng B B and Wei Q 2015 Sci. Rep. 5 15481
[20] Li Y W, Li Q and Ma Y M 2011 EPL 95 66006
[21] Zhou S and Zhao J J 2016 Nanoscale 8 8910
[22] Wang S N, Oganov A R, Qian G R, Zhu Q, Dong H F, Dong X and Esfahani M M D 2016 Phys. Chem. Chem. Phys. 18 1859
[23] Zhang X X, Wang Y C, Lv J, Zhu C Y, Li Q, Zhang M, Li Q and Ma Y M 2013 J. Chem. Phys. 138 114101
[24] Sun H, Jhi S H, Roundy D, Cohen M L and Louie S G 2001 Phys. Rev. B 64 094108
[25] Fan Q Y, Wei Q, Chai C C, Zhang M G, Yan H Y, Zhang Z X, Zhang J Q and Zhang D Y 2015 Comput. Mater. Sci. 97 6
[26] Fan Q Y, Wei Q, Chai C C, Yan H Y, Zhang M G, Lin Z Z, Zhang Z X, Zhang J Q and Zhang D Y 2015 J. Phys. Chem. Solids 79 89
[27] Krukau A V, Vydrov O A, Izmaylov A F and Scuseria G E 2006 J. Chem. Phys. 125 224106
[28] Hohenberg P and Kohn W 1964 Phys. Rev. 136 B864
[29] Kohn W and Sham L J 1965 Phys. Rev. 140 A1133
[30] Vanderbilt D 1990 Phys. Rev. B 41 7892R
[31] Pfrommer B G, Côté M, Louie S G and Cohen M L 1997 J. Comput. Phys. 131 233
[32] Perdew J P, Burke K and Ernzerhof M 1996 Phys. Rev. Lett. 77 3865
[33] Perdew J P and Zunger A 1981 Phys. Rev. B 23 5048
[34] Monkhorst H J and Pack J D 1976 Phys. Rev. B 13 5188
[35] Petrescu M I 2004 Diamond Relat. Mater. 13 1848
[36] Li X Z and Xing M J 2018 Comput. Mater. Sci. 143 32
[37] Automatic - Flow for Materials Discovery
[38] Wu Z J, Zhao E J, Xiang H P, Hao X F, Liu X J and Meng J 2007 Phys. Rev. B 76 054115
[39] Xing M J, Li B H, Yu Z T and Chen Q 2015 J. Mater. Sci. 50 7104
[40] Hill R 1952 Proc. Phys. Soc. A 65 349
[41] Ma Z Y, Yan F, Wang S X, Jia Q Q, Yu X H and Shi C L 2017 Chin. Phys. B 26 126105
[42] Fan Q Y, Chai C C, Wei Q, Zhou P K and Yang Y T 2017 Mater. Design. 132 539
[43] Fan Q Y, Zhang W Z, Yun S N, Xu J and Song Y X 2018 Chem. Eur. J. 24 17280
[44] Chen X Q, Niu H Y, Li D Z and Li Y Y 2011 Intermetallics 19 1275
[45] Lyakhov A O and Oganov A R 2011 Phys. Rev. B 84 092103
[46] Gao F M, He J L, Wu E D, Liu S M, Yu D L, Li D C, Zhang S Y and Tian Y J 2003 Phys. Rev. Lett. 91 015502
[47] Xing M J, Li B H, Yu Z T and Chen Q 2016 RSC Adv. 6 32740
[48] Bu H X, Zhao M W, Dong W Z, Lu S W and Wang X P 2014 J. Mater. Chem. C 2 2751
[49] Bu H, Zhao M, Xi Y, Wang X, Peng H, Wang C and Liu X 2012 Europhys. Lett. 100 56003
[50] Chen X Q, Niu H, Franchini C, Li D and Li Y 2011 Phys. Rev. B 84 121405
[51] Pugh S F 1954 Lond. Edinb. Dublin. Philos. Mag. J. Sci. 45 823
[52] Duan Y H, Sun Y, Peng M J and Zhou S G 2014 J. Alloys Compd. 595 14
[53] Anderson O L 1963 J. Phys. Chem. Solids. 24 909
[54] Panda K B and Ravi K S 2006 Comput. Mater. Sci. 35 134
[55] Marmier A, Lethbridge Z A D, Walton R I, Smith C W, Parker S C and Evans K E 2010 Comput. Phys. Commun. 181 2102
[56] Hu W C, Liu Y, Li D J, Zeng X Q and Xu C S 2014 Comput. Mater. Sci. 83 27
[57] Sun M L, Chou J, Gao J F, Cheng Y, Hu A, Tang W C and Zhang G 2018 ACS Omega 3 8514
[58] Sun M L, Ren Q Q, Wang S K, Yu J and Tang W C 2016 J. Phys. D 49 445305
[59] Fan Q Y, Chai C C, Wei Q, Zhou P K, Zhang J Q and Yang Y T 2016 Materials 9 284
[60] Sun M L, Chou J, Shi L H, Gao J F, Hu A, Tang W C and Zhang G 2018 ACS Omega 3 5971
[61] Tang W C, Sun M L, Ren Q Q, Zhang Y J, Wang S K and Yu J 2016 RSC Adv. 6 95846
[62] Xu X Y, Chai C C, Fan Q Y and Yang Y T 2017 Chin. Phys. B 26 046101
[63] Sun M L, Chou J, Zhao Y M, Yu J and Tang W C 2017 Phys. Chem. Chem. Phys. 19 28127
[64] Heyd J, Peralta J E, Scuseria G E and Martin R L 2005 J. Chem. Phys. 123 174101
[65] Cahill D G, Watson S K and Pohl R O 1992 Phys. Rev. B 46 6131
[66] Fan Q Y, Niu R, Zhang W Z, Zhang W, Ding Y C and Yun S N 2019 ChemPhysChem 20 128
[67] Fan Q Y, Chai C C, Wei Q, Wong K Q, Liu Y Q and Yang Y T 2018 J. Mater. Sci. 53 2785
[1] Mechanical enhancement and weakening in Mo6S6 nanowire by twisting
Ke Xu(徐克), Yanwen Lin(林演文), Qiao Shi(石桥), Yuequn Fu(付越群), Yi Yang(杨毅),Zhisen Zhang(张志森), and Jianyang Wu(吴建洋). Chin. Phys. B, 2023, 32(4): 046204.
[2] Effect of spatial heterogeneity on level of rejuvenation in Ni80P20 metallic glass
Tzu-Chia Chen, Mahyuddin KM Nasution, Abdullah Hasan Jabbar, Sarah Jawad Shoja, Waluyo Adi Siswanto, Sigiet Haryo Pranoto, Dmitry Bokov, Rustem Magizov, Yasser Fakri Mustafa, A. Surendar, Rustem Zalilov, Alexandr Sviderskiy, Alla Vorobeva, Dmitry Vorobyev, and Ahmed Alkhayyat. Chin. Phys. B, 2022, 31(9): 096401.
[3] Theoretical study of M6X2 and M6XX' structure (M = Au, Ag; X,X' = S, Se): Electronic and optical properties, ability of photocatalytic water splitting, and tunable properties under biaxial strain
Jiaqi Li(李嘉琪), Xinlu Cheng(程新路), and Hong Zhang(张红). Chin. Phys. B, 2022, 31(9): 097101.
[4] Molecular dynamics simulations of mechanical properties of epoxy-amine: Cross-linker type and degree of conversion effects
Yongqin Zhang(张永钦), Hua Yang(杨华), Yaguang Sun(孙亚光),Xiangrui Zheng(郑香蕊), and Yafang Guo(郭雅芳). Chin. Phys. B, 2022, 31(6): 064209.
[5] Assessing the effect of hydrogen on the electronic properties of 4H-SiC
Yuanchao Huang(黄渊超), Rong Wang(王蓉), Yiqiang Zhang(张懿强), Deren Yang(杨德仁), and Xiaodong Pi(皮孝东). Chin. Phys. B, 2022, 31(5): 056108.
[6] Insights into the adsorption of water and oxygen on the cubic CsPbBr3 surfaces: A first-principles study
Xin Zhang(张鑫), Ruge Quhe(屈贺如歌), and Ming Lei(雷鸣). Chin. Phys. B, 2022, 31(4): 046401.
[7] First-principles study of stability of point defects and their effects on electronic properties of GaAs/AlGaAs superlattice
Shan Feng(冯山), Ming Jiang(姜明), Qi-Hang Qiu(邱启航), Xiang-Hua Peng(彭祥花), Hai-Yan Xiao(肖海燕), Zi-Jiang Liu(刘子江), Xiao-Tao Zu(祖小涛), and Liang Qiao(乔梁). Chin. Phys. B, 2022, 31(3): 036104.
[8] First principles study on geometric and electronic properties of two-dimensional Nb2CTx MXenes
Guoliang Xu(徐国亮), Jing Wang(王晶), Xilin Zhang(张喜林), and Zongxian Yang(杨宗献). Chin. Phys. B, 2022, 31(3): 037304.
[9] Effect of structural vacancies on lattice vibration, mechanical, electronic, and thermodynamic properties of Cr5BSi3
Tian-Hui Dong(董天慧), Xu-Dong Zhang(张旭东), Lin-Mei Yang(杨林梅), and Feng Wang(王峰). Chin. Phys. B, 2022, 31(2): 026101.
[10] First-principles study of two new boron nitride structures: C12-BN and O16-BN
Hao Wang(王皓), Yaru Yin(殷亚茹), Xiong Yang(杨雄), Yanrui Guo(郭艳蕊), Ying Zhang(张颖), Huiyu Yan(严慧羽), Ying Wang(王莹), and Ping Huai(怀平). Chin. Phys. B, 2022, 31(2): 026102.
[11] Spin and spin-orbit coupling effects in nickel-based superalloys: A first-principles study on Ni3Al doped with Ta/W/Re
Liping Liu(刘立平), Jin Cao(曹晋), Wei Guo(郭伟), and Chongyu Wang(王崇愚). Chin. Phys. B, 2022, 31(1): 016105.
[12] Achieving high-performance multilayer MoSe2 photodetectors by defect engineering
Jintao Hong(洪锦涛), Fengyuan Zhang(张丰源), Zheng Liu(刘峥), Jie Jiang(蒋杰), Zhangting Wu(吴章婷), Peng Zheng(郑鹏), Hui Zheng(郑辉), Liang Zheng(郑梁), Dexuan Huo(霍德璇), Zhenhua Ni(倪振华), and Yang Zhang(张阳). Chin. Phys. B, 2021, 30(8): 087801.
[13] Structural, mechanical, electronic properties, and Debye temperature of quaternary carbide Ti3NiAl2C ceramics under high pressure: A first-principles study
Diyou Jiang(姜迪友), Wenbo Xiao(肖文波), and Sanqiu Liu(刘三秋). Chin. Phys. B, 2021, 30(3): 036202.
[14] Structure prediction, electronic, and mechanical properties of alkali metal MB12 ( M= Be, Mg, Ca, Sr) from first principles
Chun-Ying Pu(濮春英), Rong-Mei Yu(于荣梅), Ting Wang(王婷), Zhen-Yan X\"ue(薛振彦), Yong-Sheng Zhu(朱永胜), and Da-Wei Zhou(周大伟). Chin. Phys. B, 2021, 30(1): 017102.
[15] Structural, mechanical, and electronic properties of Zr-Te compounds from first-principles calculations
Peng Wang(王鹏), Ning-Chao Zhang(张宁超), Cheng-Lu Jiang(蒋城露), Fu-Sheng Liu(刘福生), Zheng-Tang Liu(刘正堂), Qi-Jun Liu(刘其军). Chin. Phys. B, 2020, 29(7): 076201.
No Suggested Reading articles found!