Please wait a minute...
Chin. Phys. B, 2019, Vol. 28(1): 018503    DOI: 10.1088/1674-1056/28/1/018503
INTERDISCIPLINARY PHYSICS AND RELATED AREAS OF SCIENCE AND TECHNOLOGY Prev   Next  

Efficiency enhancement of ultraviolet light-emitting diodes with segmentally graded p-type AlGaN layer

Lin-Yuan Wang(王林媛)1, Wei-Dong Song(宋伟东)1, Wen-Xiao Hu(胡文晓)1, Guang Li(李光)1, Xing-Jun Luo(罗幸君)1, Hu Wang(汪虎)1, Jia-Kai Xiao(肖稼凯)1, Jia-Qi Guo(郭佳琦)1, Xing-Fu Wang(王幸福)1, Rui Hao(郝锐)3, Han-Xiang Yi(易翰翔)3, Qi-Bao Wu(吴启保)2, Shu-Ti Li(李述体)1
1 Guangdong Engineering Research Center of Optoelectronic Functional Materials and Devices, South China Normal University, Guangzhou 510631, China;
2 School of Intelligent Manufacture and Equipment, Shenzhen Institute of Information Technology, Shenzhen 518172, China;
3 Guangdong Deli Semiconductor Co., Ltd, Jiangmen 529000, China
Abstract  

AlGaN-based ultraviolet light-emitting diodes (UV-LEDs) have attracted considerable interest due to their wide range of application fields. However, they are still suffering from low light out power and unsatisfactory quantum efficiency. The utilization of polarization-doped technique by grading the Al content in p-type layer has demonstrated its effectiveness in improving LED performances by providing sufficiently high hole concentration. However, too large degree of grading through monotonously increasing the Al content causes strains in active regions, which constrains application of this technique, especially for short wavelength UV-LEDs. To further improve 340-nm UV-LED performances, segmentally graded Al content p-AlxGa1-xN has been proposed and investigated in this work. Numerical results show that the internal quantum efficiency and output power of proposed structures are improved due to the enhanced carrier concentrations and radiative recombination rate in multiple quantum wells, compared to those of the conventional UV-LED with a stationary Al content AlGaN electron blocking layer. Moreover, by adopting the segmentally graded p-AlxGa1-xN, band bending within the last quantum barrier/p-type layer interface is effectively eliminated.

Keywords:  AlGaN      ultraviolet light-emitting diodes      polarization-doped p-type layer  
Received:  28 June 2018      Revised:  13 September 2018      Accepted manuscript online: 
PACS:  85.60.Jb (Light-emitting devices)  
  73.40.Kp (III-V semiconductor-to-semiconductor contacts, p-n junctions, and heterojunctions)  
  78.20.Bh (Theory, models, and numerical simulation)  
  87.16.ad (Analytical theories)  
Fund: 

Project supported by the National Natural Science Foundation of China (Grant Nos. 61874161 and 11474105), the Science and Technology Program of Guangdong Province, China (Grant Nos. 2017B010127001 and 2015B010105011), the Education Department Project of Guangdong Province, China (Grant No. 2017KZDXM022), the Science and Technology Project of Guangzhou City, China (Grant No. 201607010246), the Program for Changjiang Scholars and Innovative Research Team in Universities of China (Grant No. IRT13064), the Science and Technology Project of Shenzhen City, China (Grant No. GJHZ20180416164721073), and the Science and Technology Planning of Guangdong Province, China (Grant No. 2015B010112002).

Corresponding Authors:  Qi-Bao Wu, Shu-Ti Li     E-mail:  wuqb@sziit.edu.cn;lishuti@scnu.edu.cn

Cite this article: 

Lin-Yuan Wang(王林媛), Wei-Dong Song(宋伟东), Wen-Xiao Hu(胡文晓), Guang Li(李光), Xing-Jun Luo(罗幸君), Hu Wang(汪虎), Jia-Kai Xiao(肖稼凯), Jia-Qi Guo(郭佳琦), Xing-Fu Wang(王幸福), Rui Hao(郝锐), Han-Xiang Yi(易翰翔), Qi-Bao Wu(吴启保), Shu-Ti Li(李述体) Efficiency enhancement of ultraviolet light-emitting diodes with segmentally graded p-type AlGaN layer 2019 Chin. Phys. B 28 018503

[1] Hirayama H, Yatabe T, Noguchi N, Ohashi T and Kamata N 2007 Appl. Phys. Lett. 91 091101
[2] Hirayama H, Noguchi N, Yatabe T and Kamata N 2009 Int. J. Surg. 7 180
[3] Piprek J 2012 Opt. Quantum Electron. 44 67
[4] Zhang Y, Krishnamoorthy S, Akyol F, Allerman A A, Moseley M W, Armstrong A M and Rajan S 2016 Appl. Phys. Lett. 109 082101
[5] Pimputkar S, Speck J S, Denbaars S P and Nakamura S 2009 Nat. Photon. 3 180
[6] Bao X, Sun P, Liu S, Ye C, Li S and Kang J 2015 IEEE Photon. J. 7 1
[7] Lin B C, Wang C H, Lin C C, Chiu C H, Kuo H C, Chen K J, Shih M H, Lee P T, Kuo Y K and Lan Y P 2014 Opt. Express 22 463
[8] Zhang Z H, Tiam T S, Kyaw Z, Liu W, Ji Y, Ju Z, Zhang X, Wei S X and Volkan D H 2013 Appl. Phys. Lett. 103 263501
[9] Lei Y, Liu Z Q, He M, Yi X Y, Wang J X, Li J M, Zheng S W and Li S T 2015 J. Semicond. 36 054006
[10] Cai J X, Sun H Q, Zheng H, Zhang P J and Guo Z Y 2014 Chin. Phys. B 23 058502
[11] Zhang Y, Yu L, Li K, Pi H, Diao J, Wang X, Shen Y, Zhang C, Hu W and Song W 2015 Superlattices Microstruct. 82 151
[12] Hu W X, Qin P, Song W D, Zhang C Z, Wang R P, Zhao L L, Xia C, Yuan S Y, Yin Y A and Li S T 2016 S Superlattices Microstruct. 97 353
[13] Simon J, Protasenko V, Lian C, Xing H and Jena D 2010 Science 327 60
[14] Gao L, Xie F and Yang G 2014 Superlattices Microstruct. 71 1
[15] Zhang L, Wei X C, Liu N X, Lu H X, Zeng J P, Wang J X, Zeng Y P and Li J M 2011 Appl. Phys. Lett. 98 101110
[16] Kuo Y K, Chang J Y, Chang H T, Chen F M, Shih Y H and Liou B T 2017 IEEE J. Quantum Electron. 53 1
[17] Khokhlev O V, Bulashevich K A and Karpov S Y 2013 Phys. Status Solidi 210 1369
[18] Li Y, Chen S, Tian W, Wu Z, Fang Y, Dai J and Chen C 2013 IEEE Photon. J. 5 8200309
[1] Reverse gate leakage mechanism of AlGaN/GaN HEMTs with Au-free gate
Xin Jiang(蒋鑫), Chen-Hao Li(李晨浩), Shuo-Xiong Yang(羊硕雄), Jia-Hao Liang(梁家豪), Long-Kun Lai(来龙坤), Qing-Yang Dong(董青杨), Wei Huang(黄威),Xin-Yu Liu(刘新宇), and Wei-Jun Luo(罗卫军). Chin. Phys. B, 2023, 32(3): 037201.
[2] Effect of surface plasmon coupling with radiating dipole on the polarization characteristics of AlGaN-based light-emitting diodes
Yi Li(李毅), Mei Ge(葛梅), Meiyu Wang(王美玉), Youhua Zhu(朱友华), and Xinglong Guo(郭兴龙). Chin. Phys. B, 2022, 31(7): 077801.
[3] Simulation design of normally-off AlGaN/GaN high-electron-mobility transistors with p-GaN Schottky hybrid gate
Yun-Long He(何云龙), Fang Zhang(张方), Kai Liu(刘凯), Yue-Hua Hong(洪悦华), Xue-Feng Zheng(郑雪峰),Chong Wang(王冲), Xiao-Hua Ma(马晓华), and Yue Hao(郝跃). Chin. Phys. B, 2022, 31(6): 068501.
[4] Improved device performance of recessed-gate AlGaN/GaN HEMTs by using in-situ N2O radical treatment
Xinchuang Zhang(张新创), Mei Wu(武玫), Bin Hou(侯斌), Xuerui Niu(牛雪锐), Hao Lu(芦浩), Fuchun Jia(贾富春), Meng Zhang(张濛), Jiale Du(杜佳乐), Ling Yang(杨凌), Xiaohua Ma(马晓华), and Yue Hao(郝跃). Chin. Phys. B, 2022, 31(5): 057301.
[5] Current oscillation in GaN-HEMTs with p-GaN islands buried layer for terahertz applications
Wen-Lu Yang(杨文璐), Lin-An Yang(杨林安), Fei-Xiang Shen(申飞翔), Hao Zou(邹浩), Yang Li(李杨), Xiao-Hua Ma(马晓华), and Yue Hao(郝跃). Chin. Phys. B, 2022, 31(5): 058505.
[6] High linearity AlGaN/GaN HEMT with double-Vth coupling for millimeter-wave applications
Pengfei Wang(王鹏飞), Minhan Mi(宓珉瀚), Meng Zhang(张濛), Jiejie Zhu(祝杰杰), Yuwei Zhou(周雨威), Jielong Liu(刘捷龙), Sijia Liu(刘思佳), Ling Yang(杨凌), Bin Hou(侯斌), Xiaohua Ma(马晓华), and Yue Hao(郝跃). Chin. Phys. B, 2022, 31(2): 027103.
[7] High power-added-efficiency AlGaN/GaN HEMTs fabricated by atomic level controlled etching
Xinchuang Zhang(张新创), Bin Hou(侯斌), Fuchun Jia(贾富春), Hao Lu(芦浩), Xuerui Niu(牛雪锐), Mei Wu(武玫), Meng Zhang(张濛), Jiale Du(杜佳乐), Ling Yang(杨凌), Xiaohua Ma(马晓华), and Yue Hao(郝跃). Chin. Phys. B, 2022, 31(2): 027301.
[8] Normally-off AlGaN/GaN heterojunction field-effect transistors with in-situ AlN gate insulator
Taofei Pu(蒲涛飞), Shuqiang Liu(刘树强), Xiaobo Li(李小波), Ting-Ting Wang(王婷婷), Jiyao Du(都继瑶), Liuan Li(李柳暗), Liang He(何亮), Xinke Liu(刘新科), and Jin-Ping Ao(敖金平). Chin. Phys. B, 2022, 31(12): 127701.
[9] Fluorine-plasma treated AlGaN/GaN high electronic mobility transistors under off-state overdrive stress
Dongyan Zhao(赵东艳), Yubo Wang(王于波), Yanning Chen(陈燕宁), Jin Shao(邵瑾), Zhen Fu(付振), Fang Liu(刘芳), Yanrong Cao(曹艳荣), Faqiang Zhao(赵法强), Mingchen Zhong(钟明琛), Yasong Zhang(张亚松), Maodan Ma(马毛旦), Hanghang Lv(吕航航), Zhiheng Wang(王志恒), Ling Lv(吕玲), Xuefeng Zheng(郑雪峰), and Xiaohua Ma(马晓华). Chin. Phys. B, 2022, 31(11): 117301.
[10] A novel Si-rich SiN bilayer passivation with thin-barrier AlGaN/GaN HEMTs for high performance millimeter-wave applications
Zhihong Chen(陈治宏), Minhan Mi(宓珉瀚), Jielong Liu(刘捷龙), Pengfei Wang(王鹏飞), Yuwei Zhou(周雨威), Meng Zhang(张濛), Xiaohua Ma(马晓华), and Yue Hao(郝跃). Chin. Phys. B, 2022, 31(11): 117105.
[11] High-frequency enhancement-mode millimeterwave AlGaN/GaN HEMT with an fT/fmax over 100 GHz/200 GHz
Sheng Wu(武盛), Minhan Mi(宓珉瀚), Xiaohua Ma(马晓华), Ling Yang(杨凌), Bin Hou(侯斌), and Yue Hao(郝跃). Chin. Phys. B, 2021, 30(8): 087102.
[12] Ferroelectric effect and equivalent polarization charge model of PbZr0.2Ti0.8O3 on AlGaN/GaN MIS-HEMT
Yao-Peng Zhao(赵垚澎), Chong Wang(王冲), Xue-Feng Zheng(郑雪峰), Xiao-Hua Ma(马晓华), Ang Li(李昂), Kai Liu(刘凯), Yun-Long He(何云龙), Xiao-Li Lu(陆小力) and Yue Hao(郝跃). Chin. Phys. B, 2021, 30(5): 057302.
[13] Optical polarization characteristics for AlGaN-based light-emitting diodes with AlGaN multilayer structure as well layer
Lu Xue(薛露), Yi Li(李毅), Mei Ge(葛梅), Mei-Yu Wang(王美玉), and You-Hua Zhu(朱友华). Chin. Phys. B, 2021, 30(4): 047802.
[14] Effects of notch structures on DC and RF performances of AlGaN/GaN high electron mobility transistors
Hao Zou(邹浩), Lin-An Yang(杨林安), Xiao-Hua Ma(马晓华), and Yue Hao(郝跃). Chin. Phys. B, 2021, 30(4): 040502.
[15] Distribution of donor states on the surfaceof AlGaN/GaN heterostructures
Yue-Bo Liu(柳月波), Hong-Hui Liu(刘红辉), Jun-Yu Shen(沈俊宇), Wan-Qing Yao(姚婉青), Feng-Ge Wang(王风格), Yuan Ren(任远), Min-Jie Zhang(张敏杰), Zhi-Sheng Wu(吴志盛), Yang Liu(刘扬), and Bai-Jun Zhang(张佰君). Chin. Phys. B, 2021, 30(12): 128102.
No Suggested Reading articles found!