Special Issue:
SPECIAL TOPIC — Photodetector: Materials, physics, and applications
|
SPECIAL TOPIC—Photodetector: materials, physics, and applications |
Prev
Next
|
|
|
Photovoltaic effects in reconfigurable heterostructured black phosphorus transistors |
Siqi Hu(胡思奇)1, Ruijuan Tian(田睿娟)1, Xiaoguang Luo(罗小光)2, Rui Yin(殷瑞)1, Yingchun Cheng(程迎春)2, Jianlin Zhao(赵建林)1, Xiaomu Wang(王肖沐)3, Xuetao Gan(甘雪涛)1 |
1 MOE Key Laboratory of Material Physics and Chemistry under Extraordinary Conditions, and Shaanxi Key Laboratory of Optical Information Technology, School of Science, Northwestern Polytechnical Univeristy, Xi'an 710072, China;
2 Shannxi Institute of Flexible Electronics, Northwestern Polytechnical University, Xi'an 710072, China;
3 School of Electronic Science and Engineering, Nanjing University, Nanjing 210023, China |
|
|
Abstract We demonstrate a reconfigurable black phosphorus electrical field transistor, which is van der Waals heterostructured with few-layer graphene and hexagonal boron nitride flakes. Varied homojunctions could be realized by controlling both source-drain and top-gate voltages. With the spatially resolved scanning photocurrent microscopy technique, photovoltaic photocurrents originated from the band-bending regions are observed, confirming nine different configurations for each set of fixed voltages. In addition, as a phototransistor, high responsivity (~800 mA/W) and fast response speed (~230 μs) are obtained from the device. The reconfigurable van der Waals heterostructured transistors may offer a promising structure towards electrically tunable black phosphorus-based optoelectronic devices.
|
Received: 20 September 2018
Revised: 30 September 2018
Accepted manuscript online:
|
PACS:
|
85.30.Kk
|
(Junction diodes)
|
|
85.60.Bt
|
(Optoelectronic device characterization, design, and modeling)
|
|
85.60.Dw
|
(Photodiodes; phototransistors; photoresistors)
|
|
Fund: Project supported by the National Key Research and Development Program of China (Grant Nos. 2018YFA0307200 and 2017YFA0303800), the National Natural Science Foundations of China (Grant Nos. 61522507 and 61775183), the Key Research and Development Program in Shaanxi Province of China (Grant No. 2017KJXX-12), and the Fundamental Research Funds for the Central Universities (Grant Nos. 3102017jc01001 and 3102018jcc034). |
Corresponding Authors:
Xuetao Gan
E-mail: xuetaogan@nwpu.edu.cn
|
Cite this article:
Siqi Hu(胡思奇), Ruijuan Tian(田睿娟), Xiaoguang Luo(罗小光), Rui Yin(殷瑞), Yingchun Cheng(程迎春), Jianlin Zhao(赵建林), Xiaomu Wang(王肖沐), Xuetao Gan(甘雪涛) Photovoltaic effects in reconfigurable heterostructured black phosphorus transistors 2018 Chin. Phys. B 27 128502
|
[1] |
Novoselov K S, Geim A K, Morozov S V, Jiang D, Katsnelson M I, Grigorieva I V, Dubonos S V and Firsov A A 2005 Nature 438 197
|
[2] |
Zhang Y, Tan Y W, Stormer H L and Kim P 2005 Nature 438 201
|
[3] |
Novoselov K S, Jiang D, Schedin F, Booth T J, Khotkevich V V, Morozov S V and Geim A K 2005 Proc. Natl. Acad. Sci. USA 102 10451
|
[4] |
Dean C R, Young A, Meric I, Lee C, Wang L, Sorgenfrei S, Watanabe K, Taniguchi T, Kim P, Shepard K L and Hone J 2010 Nat. Nanotechnol. 5 722
|
[5] |
Radisavljevic B, Radenovic A, Brivio J, Giacometti V and Kis A 2011 Nat. Nanotechnol. 6 147
|
[6] |
Ross J, Klement P, Jones A M, Ghimire N, Yan J, Mandrus D, Taniguchi T, Watanable K, Kitamura K, Yao W, Cobden D and Xu X 2014 Nat. Nanotechnol. 9 268
|
[7] |
Kim K, Choi J, Kim T, Cho S and Chung H 2011 Nature 479 338
|
[8] |
Novoselov K S, Fai Ko V I, Colombo L, Gellert P R, Schwab M G and Kim K 2012 Nature 490 192
|
[9] |
Koppens F H L, Mueller T, Avouris Ph, Ferrari A C, Vitiello M S and Polini M 2014 Nat. Nanotechnol. 9 780
|
[10] |
Xia F, Wang H and Jia Y 2014 Nat. Commun. 5 4458
|
[11] |
Liu H, Neal A T, Zhu Z, Luo Z, Xu X, Tomanek D and Ye P D 2014 ACS Nano 8 4033
|
[12] |
Li L, Yu Y, Ye G J, Ge Q Q, Ou X, Wu H Feng D L, Chen X and Zhang Y 2014 Nat. Nanotechnol. 9 372
|
[13] |
Qiao J, Kong X, Hu Z, Yang F and Ji W 2014 Nat. Commun. 5 4475
|
[14] |
Koenig S P, Doganov R A, Schmidt H, Castro Neto A H and Özyilmaz B 2014 Appl. Phys. Lett. 104 103106
|
[15] |
Buscema M, Groenendijk D J, Blanter S I, Steele G A, Van Der Zant H S J and Castellanosgomez A 2014 Nano Lett. 14 3347
|
[16] |
Dai J and Zeng X C 2014 J. Phys. Chem. Lett. 5 1289
|
[17] |
Tran V, Soklaski R, Liang Y and Yang L 2014 Phys. Rev. B 89 235319
|
[18] |
Chen X, Wu Y, Wu Z, Han Y, Xu S, Wang L, Ye W, Han T, He Y, Cai Y and Wang N 2015 Nat. Commun. 6 7315
|
[19] |
Wang L, Meric I, Huang P Y, Gao Q, Gao Y, Tran H, Taniguchi T, Watanabe K, Campos L M, Muller D A, Guo J, Kim P, Hone J, Shepard K L and Dean C 2013 Science 342 614
|
[20] |
Castellanosgomez A, Buscema M, Molenaar R, Singh V, Janssen L, Van Der Zant H S J and Steele G A 2014 2D Mater. 1 011002
|
[21] |
Saito Y, Iwasa Y 2015 ACS Nano 9 3192
|
[22] |
Warschauer D M 1963 J. Appl. Phys. 34 1853
|
[23] |
Li D, Wang X, Zhang Q, Zou L, Xu X and Zhang Z 2015 Adv. Funct. Mater. 25 7360
|
[24] |
Kind H, Yan H, Messer B, Law M and Yang P 2002 Adv. Mater. 14 158
|
[25] |
Lopezsanchez O, Lembke D, Kayci M, Radenovic A and Kis A 2013 Nat. Nanotechnol. 8 497
|
[26] |
Chen Y, Wang X, Wu G, Wang Z, Fang H, Lin T, Sun S, Shen H, Hu W, Wang J, Sun J, Meng X and Chu J 2018 Small 14 1703293
|
[27] |
Liu F, Shimotani H, Shang H, Kanagasekaran T, Zolyomi V, Drummond N, Fal Ko V I and Tanigaki K 2013 ACS Nano 8 752
|
[28] |
Zhang E, Jin Y, Yuan X, Wang W, Zhang C, Tang L, Lou S, Zhou P, Hu W and Xiu F 2015 Adv. Funct. Mater. 25 4076
|
[29] |
Wang X, Wang P, Wang J, Hu W, Zhou X, Guo N, Huang H, Sun S, Shen H, Lin T, Tang M, Liao L, Jiang A Q, Sun J, Meng X, Chen X, Lu W and Chu J 2015 Adv. Mater. 27 6575
|
[30] |
Mudd G W, Svatek S A, Hague L, Makarovsky O, Kudrynskyi Z R, Mellor C J, Beton P H, Eaves L, Novoselov K S, Kovalyuk Z D, Vdocin E E, Marsden A J, Wilson Neil R and Patane A 2015 Adv. Mater. 27 3760
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|