Please wait a minute...
Chin. Phys. B, 2018, Vol. 27(12): 128502    DOI: 10.1088/1674-1056/27/12/128502
Special Issue: SPECIAL TOPIC — Photodetector: Materials, physics, and applications
SPECIAL TOPIC—Photodetector: materials, physics, and applications Prev   Next  

Photovoltaic effects in reconfigurable heterostructured black phosphorus transistors

Siqi Hu(胡思奇)1, Ruijuan Tian(田睿娟)1, Xiaoguang Luo(罗小光)2, Rui Yin(殷瑞)1, Yingchun Cheng(程迎春)2, Jianlin Zhao(赵建林)1, Xiaomu Wang(王肖沐)3, Xuetao Gan(甘雪涛)1
1 MOE Key Laboratory of Material Physics and Chemistry under Extraordinary Conditions, and Shaanxi Key Laboratory of Optical Information Technology, School of Science, Northwestern Polytechnical Univeristy, Xi'an 710072, China;
2 Shannxi Institute of Flexible Electronics, Northwestern Polytechnical University, Xi'an 710072, China;
3 School of Electronic Science and Engineering, Nanjing University, Nanjing 210023, China
Abstract  

We demonstrate a reconfigurable black phosphorus electrical field transistor, which is van der Waals heterostructured with few-layer graphene and hexagonal boron nitride flakes. Varied homojunctions could be realized by controlling both source-drain and top-gate voltages. With the spatially resolved scanning photocurrent microscopy technique, photovoltaic photocurrents originated from the band-bending regions are observed, confirming nine different configurations for each set of fixed voltages. In addition, as a phototransistor, high responsivity (~800 mA/W) and fast response speed (~230 μs) are obtained from the device. The reconfigurable van der Waals heterostructured transistors may offer a promising structure towards electrically tunable black phosphorus-based optoelectronic devices.

Keywords:  black phosphorus      reconfigurable heterostructure      photovoltaic effect      photocurrent  
Received:  20 September 2018      Revised:  30 September 2018      Accepted manuscript online: 
PACS:  85.30.Kk (Junction diodes)  
  85.60.Bt (Optoelectronic device characterization, design, and modeling)  
  85.60.Dw (Photodiodes; phototransistors; photoresistors)  
Fund: 

Project supported by the National Key Research and Development Program of China (Grant Nos. 2018YFA0307200 and 2017YFA0303800), the National Natural Science Foundations of China (Grant Nos. 61522507 and 61775183), the Key Research and Development Program in Shaanxi Province of China (Grant No. 2017KJXX-12), and the Fundamental Research Funds for the Central Universities (Grant Nos. 3102017jc01001 and 3102018jcc034).

Corresponding Authors:  Xuetao Gan     E-mail:  xuetaogan@nwpu.edu.cn

Cite this article: 

Siqi Hu(胡思奇), Ruijuan Tian(田睿娟), Xiaoguang Luo(罗小光), Rui Yin(殷瑞), Yingchun Cheng(程迎春), Jianlin Zhao(赵建林), Xiaomu Wang(王肖沐), Xuetao Gan(甘雪涛) Photovoltaic effects in reconfigurable heterostructured black phosphorus transistors 2018 Chin. Phys. B 27 128502

[1] Novoselov K S, Geim A K, Morozov S V, Jiang D, Katsnelson M I, Grigorieva I V, Dubonos S V and Firsov A A 2005 Nature 438 197
[2] Zhang Y, Tan Y W, Stormer H L and Kim P 2005 Nature 438 201
[3] Novoselov K S, Jiang D, Schedin F, Booth T J, Khotkevich V V, Morozov S V and Geim A K 2005 Proc. Natl. Acad. Sci. USA 102 10451
[4] Dean C R, Young A, Meric I, Lee C, Wang L, Sorgenfrei S, Watanabe K, Taniguchi T, Kim P, Shepard K L and Hone J 2010 Nat. Nanotechnol. 5 722
[5] Radisavljevic B, Radenovic A, Brivio J, Giacometti V and Kis A 2011 Nat. Nanotechnol. 6 147
[6] Ross J, Klement P, Jones A M, Ghimire N, Yan J, Mandrus D, Taniguchi T, Watanable K, Kitamura K, Yao W, Cobden D and Xu X 2014 Nat. Nanotechnol. 9 268
[7] Kim K, Choi J, Kim T, Cho S and Chung H 2011 Nature 479 338
[8] Novoselov K S, Fai Ko V I, Colombo L, Gellert P R, Schwab M G and Kim K 2012 Nature 490 192
[9] Koppens F H L, Mueller T, Avouris Ph, Ferrari A C, Vitiello M S and Polini M 2014 Nat. Nanotechnol. 9 780
[10] Xia F, Wang H and Jia Y 2014 Nat. Commun. 5 4458
[11] Liu H, Neal A T, Zhu Z, Luo Z, Xu X, Tomanek D and Ye P D 2014 ACS Nano 8 4033
[12] Li L, Yu Y, Ye G J, Ge Q Q, Ou X, Wu H Feng D L, Chen X and Zhang Y 2014 Nat. Nanotechnol. 9 372
[13] Qiao J, Kong X, Hu Z, Yang F and Ji W 2014 Nat. Commun. 5 4475
[14] Koenig S P, Doganov R A, Schmidt H, Castro Neto A H and Özyilmaz B 2014 Appl. Phys. Lett. 104 103106
[15] Buscema M, Groenendijk D J, Blanter S I, Steele G A, Van Der Zant H S J and Castellanosgomez A 2014 Nano Lett. 14 3347
[16] Dai J and Zeng X C 2014 J. Phys. Chem. Lett. 5 1289
[17] Tran V, Soklaski R, Liang Y and Yang L 2014 Phys. Rev. B 89 235319
[18] Chen X, Wu Y, Wu Z, Han Y, Xu S, Wang L, Ye W, Han T, He Y, Cai Y and Wang N 2015 Nat. Commun. 6 7315
[19] Wang L, Meric I, Huang P Y, Gao Q, Gao Y, Tran H, Taniguchi T, Watanabe K, Campos L M, Muller D A, Guo J, Kim P, Hone J, Shepard K L and Dean C 2013 Science 342 614
[20] Castellanosgomez A, Buscema M, Molenaar R, Singh V, Janssen L, Van Der Zant H S J and Steele G A 2014 2D Mater. 1 011002
[21] Saito Y, Iwasa Y 2015 ACS Nano 9 3192
[22] Warschauer D M 1963 J. Appl. Phys. 34 1853
[23] Li D, Wang X, Zhang Q, Zou L, Xu X and Zhang Z 2015 Adv. Funct. Mater. 25 7360
[24] Kind H, Yan H, Messer B, Law M and Yang P 2002 Adv. Mater. 14 158
[25] Lopezsanchez O, Lembke D, Kayci M, Radenovic A and Kis A 2013 Nat. Nanotechnol. 8 497
[26] Chen Y, Wang X, Wu G, Wang Z, Fang H, Lin T, Sun S, Shen H, Hu W, Wang J, Sun J, Meng X and Chu J 2018 Small 14 1703293
[27] Liu F, Shimotani H, Shang H, Kanagasekaran T, Zolyomi V, Drummond N, Fal Ko V I and Tanigaki K 2013 ACS Nano 8 752
[28] Zhang E, Jin Y, Yuan X, Wang W, Zhang C, Tang L, Lou S, Zhou P, Hu W and Xiu F 2015 Adv. Funct. Mater. 25 4076
[29] Wang X, Wang P, Wang J, Hu W, Zhou X, Guo N, Huang H, Sun S, Shen H, Lin T, Tang M, Liao L, Jiang A Q, Sun J, Meng X, Chen X, Lu W and Chu J 2015 Adv. Mater. 27 6575
[30] Mudd G W, Svatek S A, Hague L, Makarovsky O, Kudrynskyi Z R, Mellor C J, Beton P H, Eaves L, Novoselov K S, Kovalyuk Z D, Vdocin E E, Marsden A J, Wilson Neil R and Patane A 2015 Adv. Mater. 27 3760
[1] Graphene-based heterojunction for enhanced photodetectors
Haiting Yao(姚海婷), Xin Guo(郭鑫), Aida Bao(鲍爱达), Haiyang Mao(毛海央),Youchun Ma(马游春), and Xuechao Li(李学超). Chin. Phys. B, 2022, 31(3): 038501.
[2] Boosting the performance of crossed ZnO microwire UV photodetector by mechanical contact homo-interface barrier
Yinzhe Liu(刘寅哲), Kewei Liu(刘可为), Jialin Yang(杨佳霖), Zhen Cheng(程祯), Dongyang Han(韩冬阳), Qiu Ai(艾秋), Xing Chen(陈星), Yongxue Zhu(朱勇学), Binghui Li(李炳辉), Lei Liu(刘雷), and Dezhen Shen(申德振). Chin. Phys. B, 2022, 31(10): 106101.
[3] Recombination-induced voltage-dependent photocurrent collection loss in CdTe thin film solar cell
Ling-Ling Wu(吴玲玲), Guang-Wei Wang(王光伟), Juan Tian(田涓), Dong-Ming Wang(王东明), and De-Liang Wang(王德亮). Chin. Phys. B, 2022, 31(10): 108803.
[4] Design and optimization of a nano-antenna hybrid structure for solar energy harvesting application
Mohammad Javad Rabienejhad, Mahdi Davoudi-Darareh, and Azardokht Mazaheri. Chin. Phys. B, 2021, 30(9): 098503.
[5] High performance terahertz anisotropic absorption in graphene-black phosphorus heterostructure
Jinming Liang(梁晋铭), Jiangtao Lei(雷江涛), Yun Wang(汪云), Yan Ding(丁燕), Yun Shen(沈云), Xiaohua Deng(邓晓华). Chin. Phys. B, 2020, 29(8): 087805.
[6] Selective linear etching of monolayer black phosphorus using electron beams
Yuhao Pan(潘宇浩), Bao Lei(雷宝), Jingsi Qiao(乔婧思), Zhixin Hu(胡智鑫), Wu Zhou(周武), Wei Ji(季威). Chin. Phys. B, 2020, 29(8): 086801.
[7] Photocurrent improvement of an ultra-thin silicon solar cell using the localized surface plasmonic effect of clustering nanoparticles
F Sobhani, H Heidarzadeh, H Bahador. Chin. Phys. B, 2020, 29(6): 068401.
[8] Studying the charge carrier properties in CuInS2 films via femtosecond transient absorption and nanosecond transient photocurrents
Mingrui Tan(谭铭瑞), Qinghui Liu(刘庆辉), Ning Sui(隋宁), Zhihui Kang(康智慧), Liquan Zhang(张里荃), Hanzhuang Zhang(张汉壮), Wenquan Wang(王文全), Qiang Zhou(周强), Yinghui Wang(王英惠). Chin. Phys. B, 2019, 28(5): 056106.
[9] Visualizing light-to-electricity conversion process in InGaN/GaN multi-quantum wells with a p-n junction
Yangfeng Li(李阳锋), Yang Jiang(江洋), Junhui Die(迭俊珲), Caiwei Wang(王彩玮), Shen Yan(严珅), Haiyan Wu(吴海燕), Ziguang Ma(马紫光), Lu Wang(王禄), Haiqiang Jia(贾海强), Wenxin Wang(王文新), Hong Chen(陈弘). Chin. Phys. B, 2018, 27(9): 097104.
[10] Black phosphorus-based field effect transistor devices for Ag ions detection
Hui-De Wang(王慧德), David K Sang, Zhi-Nan Guo(郭志男), Rui Cao(曹睿), Jin-Lai Zhao(赵劲来), Muhammad Najeeb Ullah Shah, Tao-Jian Fan(范涛健), Dian-Yuan Fan(范滇元), Han Zhang(张晗). Chin. Phys. B, 2018, 27(8): 087308.
[11] Intrinsic charge transport behaviors in graphene-black phosphorus van der Waals heterojunction devices
Guo-Cai Wang(王国才), Liang-Mei Wu(吴良妹), Jia-Hao Yan(严佳浩), Zhang Zhou(周璋), Rui-Song Ma(马瑞松), Hai-Fang Yang(杨海方), Jun-Jie Li(李俊杰), Chang-Zhi Gu(顾长志), Li-Hong Bao(鲍丽宏), Shi-Xuan Du(杜世萱), Hong-Jun Gao(高鸿钧). Chin. Phys. B, 2018, 27(7): 077303.
[12] 4.3 THz quantum-well photodetectors with high detection sensitivity
Zhenzhen Zhang(张真真), Zhanglong Fu(符张龙), Xuguang Guo(郭旭光), Juncheng Cao(曹俊诚). Chin. Phys. B, 2018, 27(3): 030701.
[13] Tunable edge bands and optical properties in black phosphorus nanoribbons under electric field
Hong Liu(刘红). Chin. Phys. B, 2018, 27(12): 127301.
[14] Electronic, optical property and carrier mobility of graphene, black phosphorus, and molybdenum disulfide based on the first principles
Congcong Wang(王聪聪), Xuesheng Liu(刘学胜), Zhiyong Wang(王智勇), Ming Zhao(赵明), Huan He(何欢), Jiyue Zou(邹吉跃). Chin. Phys. B, 2018, 27(11): 118106.
[15] Electron transport properties of TiO2 shell on Al2O3 core in dye-sensitized solar cells
Dongmei Xie(解东梅), Xiaowen Tang(唐小文), Yuan Lin(林原), Pin Ma(马品), Xiaowen Zhou(周晓文). Chin. Phys. B, 2018, 27(1): 017804.
No Suggested Reading articles found!