Please wait a minute...
Chin. Phys. B, 2018, Vol. 27(1): 017804    DOI: 10.1088/1674-1056/27/1/017804
Special Issue: SPECIAL TOPIC — New generation solar cells
SPECIAL TOPIC—New generation solar cells Prev   Next  

Electron transport properties of TiO2 shell on Al2O3 core in dye-sensitized solar cells

Dongmei Xie(解东梅)1,2, Xiaowen Tang(唐小文)1,2, Yuan Lin(林原)1,2, Pin Ma(马品)1,2, Xiaowen Zhou(周晓文)1,2
1 Beijing National laboratory for Molecular Sciences, Key Laboratory of Photochemistry, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China;
2 University of Chinese Academy of Sciences, Beijing 100049, China
Abstract  The performance of dye-sensitized solar cells (DSSCs) is strongly affected by the properties of semiconductor nanoparticles. In this work, we used TiO2 particles prepared by TiCl4 hydrolysis n times on Al2O3 films (A/T(n)), and investigated morphology, photoelectric, and electron transport properties of A/T(n). The TiO2 shell was composed of 10-20 nm nanoparticles and the number of nanoparticles increased with increasing TiCl4 treatment times. The highest photoelectric conversion efficiency of 3.23% was obtained as A/T(4). IMPS results indicated that electron transport rate was high enough to conduct current, and was not the dominating effect to limit the Jsc. Jsc was mainly determined by dye loading on TiO2 and the interconnection of TiO2. These may provide a new strategy for preparing semiconductor working electrodes for DSSC.
Keywords:  dye-sensitized solar cell      electron transportation      core-shell structure      intensity-modulated photocurrent spectroscopy  
Received:  30 September 2017      Revised:  13 November 2017      Accepted manuscript online: 
PACS:  78.55.Mb (Porous materials)  
  72.20.Jv (Charge carriers: generation, recombination, lifetime, and trapping)  
  84.60.Jt (Photoelectric conversion)  
  88.40.H- (Solar cells (photovoltaics))  
Fund: Project supported by the National Materials Genome Project of China (Grant No. 2016YFB0700600) and the National Natural Science Foundation of China (Grant No. 51673204).
Corresponding Authors:  Yuan Lin     E-mail:  linyuan@iccas.ac.cn

Cite this article: 

Dongmei Xie(解东梅), Xiaowen Tang(唐小文), Yuan Lin(林原), Pin Ma(马品), Xiaowen Zhou(周晓文) Electron transport properties of TiO2 shell on Al2O3 core in dye-sensitized solar cells 2018 Chin. Phys. B 27 017804

[1] Mahmoud S, Azam Iraji Z and Mehdi M 2014 Chin. Phys. B 23 047302
[2] Wang H Y, Wang G S, Wu H J, Luo Y H, Li D M and Meng Q B 2016 Acta Phys.-Chim. Sin. 32 201
[3] Xia R, Wang S M, Dong W W and Fang X D 2017 Acta Phys.-Chim. Sin. 33 670
[4] Duan Y, Fu N, Liu Q, Fang Y, Zhou X, Zhang J and Lin Y 2012 J. Phys. Chem. C 116 8888
[5] Wang M, Bai S, Chen A, Duan Y, Liu Q, Li D and Lin Y 2012 Electrochim. Acta 77 54
[6] Fu N, Xiao X, Zhou X, Zhang J and Lin Y 2012 J. Phys. Chem. C 116 2850
[7] Fang Y, Zhang J, Zhou X, Lin Y and Fang S 2012 Electrochim. Acta 68 235
[8] Li X, Wang C, Xia N, Jiang M, Liu R, Huang J, Li Q, Luo Z, Liu L, Xua W and Fang D 2017 J. Mol. Struct. 1148 347
[9] Zhang Q, et al. 2008 Angew Chem. Int. Ed. Engl. 47 2402
[10] Ko S H, Lee D, Kang H W, Nam K H, Yeo J Y, Hong S J, Grigoropoulos C P and Sung H J 2011 Nano Lett. 11 666
[11] Memarian N, Concina I, Braga A, Rozati S M, Vomiero A and Sberveglieri G 2011 Angew Chem. Int. Ed. Engl. 50 12321
[12] McCune M, Zhang W and Deng Y 2012 Nano Lett. 12 3656
[13] Xu C and Gao D 2012 J. Phys. Chem. C 116 7236
[14] Zhang R, Pan J, Briggs E P, Thrash M and Kerr L L 2008 Sol. Energ. Mat. Sol. C 92 425
[15] Birkel A, Lee Y G, Koll D, Van Meerbeek X, Frank S, Choi M J, Kang Y S, Char K and Tremel W 2012 Energ. Environ. Sci. 5 5392
[16] Gubbala S, Russell H B, Shah H, Deb B, Jasinski J, Rypkemac H and Sunkara M K 2009 Energ. Environ. Sci. 2 1302
[17] Tetreault N, ArsenaultÉ, Heiniger L, Soheilnia N, Brillet J, Moehl T, Zakeeruddin S, Ozin G A and Grätzel M 2011 Nano Lett. 11 4579
[18] Snaith H J and Ducati C 2010 Nano Lett. 10 1259
[19] Gao C, Li X, Lu B, Chen L, Wang Y, Teng F, Wang J, Zhang Z, Pan X and Xie E 2012 Nanoscale 4 3475
[20] Sommeling P M, O'Regan B C, Haswell R R, Smit H J P, Bakker N J, Smits J J T, Kroon J M and van Roosmalen J A M 2006 J. Phys. Chem. B 110 19191
[21] Zhong M, Shi J, Zhang W, Han H and Li C 2011 Mater. Sci. Eng. B 176 1115
[22] Bonhote P, Dias A, Armand M, Papageorgiou N, Kalyanasundaram K and Grätzel M 1998 Inorg. Chem. 37 166
[1] Sintering reaction and microstructure of MAl (M = Ni, Fe, and Mg) nanoparticles through molecular dynamics simulation
Yuwen Zhang(张宇文), Yonghe Deng(邓永和), Qingfeng Zeng(曾庆丰), Dadong Wen(文大东), Heping Zhao(赵鹤平), Ming Gao(高明), Xiongying Dai(戴雄英), and Anru Wu(吴安如)$. Chin. Phys. B, 2020, 29(11): 116601.
[2] Micromagnetic simulations of reversal magnetization in cerium-containing magnets
Lei Li(李磊), Shengzhi Dong(董生智), Hongsheng Chen(陈红升), Ruijiao Jiang(姜瑞姣), Dong Li(李栋), Rui Han(韩瑞), Dong Zhou(周栋), Minggang Zhu(朱明刚), Wei Li(李卫), Wei Sun(孙威). Chin. Phys. B, 2019, 28(3): 037502.
[3] Methodical review of the literature referred to the dye-sensitized solar cells: Bibliometrics analysis and road mapping
Karwan Wasman Qadir, Qayyum Zafar, Nader Ale Ebrahim, Zubair Ahmad, Khaulah Sulaiman, Rizwan Akram, Mohammad Khaja Nazeeruddin. Chin. Phys. B, 2019, 28(11): 118401.
[4] Effect of hydroxyl on dye-sensitized solar cells assembled with TiO2 nanorods
Lijian Meng(孟立建), Tao Yang(杨涛), Sining Yun(云斯宁), Can Li(李灿). Chin. Phys. B, 2018, 27(1): 016802.
[5] Dye-sensitized solar cell module realized photovoltaic and photothermal highly efficient conversion via three-dimensional printing technology
Qi-Zhang Huang(黄启章), Yan-Qing Zhu(朱艳青), Ji-Fu Shi(史继富), Lei-Lei Wang(王雷雷), Liu-Wen Zhong(钟柳文), Gang Xu(徐刚). Chin. Phys. B, 2017, 26(3): 038401.
[6] Dye-sensitized solar cells:Atomic scale investigation of interface structure and dynamics
Ma Wei (马薇), Zhang Fan (张帆), Meng Sheng (孟胜). Chin. Phys. B, 2014, 23(8): 086801.
[7] Raman scattering in In/InOx core–shell structured nanoparticles
Wang Meng (王萌), Tian Ye (田野), Zhang Jian-Ming (张建明), Guo Chuan-Fei (郭传飞), Zhang Xin-Zheng (张心正), Liu Qian (刘前). Chin. Phys. B, 2014, 23(8): 087803.
[8] Large coercivity and unconventional exchange coupling in manganese-oxide-coated manganese–gallium nanoparticles
Feng Jun-Ning (冯俊宁), Liu Wei (刘伟), Geng Dian-Yu (耿殿禹), Ma Song (马嵩), Yu Tao (余涛), Zhao Xiao-Tian (赵晓天), Dai Zhi-Ming (代志明), Zhao Xin-Guo (赵新国), Zhang Zhi-Dong (张志东). Chin. Phys. B, 2014, 23(8): 087503.
[9] Synthesis and application of TiO2 single-crystal nanorod arrays grown by multicycle hydrothermal for dye-sensitized solar cells
Zhu Jian-Jing (朱建晶), Zhao Yu-Long (赵宇龙), Zhu Lei (朱磊), Gu Xiu-Quan (顾修全), Qiang Ying-Huai (强颖怀). Chin. Phys. B, 2014, 23(4): 048104.
[10] Dimension effects on the dielectric properties of fine BaTiO3 ceramics
Hou Zhi-Wen (侯志文), Kang Ai-Guo (康爱国), Ma Wei-Qing (马维清), Zhao Xiao-Long (赵晓龙). Chin. Phys. B, 2014, 23(11): 117701.
[11] Low platinum loading PtNPs/graphene composite catalyst with high electrocatalytic activity for dye-sensitized solar cells
Li Ping-Jian (李萍剑), Chen Kai (程凯), Chen Yuan-Fu (陈远富), Wang Ze-Gao (王泽高), Hao Xin (郝昕), Liu Jing-Bo (刘竞博), He Jia-Rui (贺加瑞), Zhang Wan-Li (张万里 ). Chin. Phys. B, 2012, 21(11): 118101.
[12] Light scattering of nanocrystalline TiO2 film used in dye-sensitized solar cells
Xiong Bi-Tao(熊必涛), Zhou Bao-Xue(周保学), Bai Jing(白晶), Zheng Qing(郑青), Liu Yan-Biao(刘艳彪), Cai Wei-Min(蔡伟民), and Cai Jun(蔡俊). Chin. Phys. B, 2008, 17(10): 3713-3719.
No Suggested Reading articles found!