Please wait a minute...
Chin. Phys. B, 2018, Vol. 27(3): 030701    DOI: 10.1088/1674-1056/27/3/030701
GENERAL Prev   Next  

4.3 THz quantum-well photodetectors with high detection sensitivity

Zhenzhen Zhang(张真真)1,3, Zhanglong Fu(符张龙)1, Xuguang Guo(郭旭光)2, Juncheng Cao(曹俊诚)1
1 Key Laboratory of Terahertz Solid-State Technology, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai 200050, China;
2 Ministry of Education and Shanghai Key Laboratory of Modern Optical System and Shanghai Terahertz Research Center, University of Shanghai for Science and Technology, Shanghai 200093, China;
3 University of Chinese Academy of Sciences, Beijing 100049, China
Abstract  

We demonstrate a high performance GaAs/AlGaAs-based quantum-well photodetector (QWP) device with a peak response frequency of 4.3 THz. The negative differential resistance (NDR) phenomenon is found in the dark current-voltage (I-V) curve in the current sweeping measurement mode, from which the breakdown voltage is determined. The photocurrent spectra and blackbody current responsivities at different voltages are measured. Based on the experimental data, the peak responsivity of 0.3 A/W (at 0.15 V, 8 K) is derived, and the detection sensitivity is higher than 1011 Jones, which is in the similar level as that of the commercialized liquid-helium-cooled silicon bolometers. We attribute the high detection performance of the device to the small ohmic contact resistance of ~2Ω and the big breakdown bias.

Keywords:  terahertz quantum-well photodetector      negative differential resistance      detection sensitivity      photocurrent spectra  
Received:  31 October 2017      Revised:  26 December 2017      Accepted manuscript online: 
PACS:  07.20.Mc (Cryogenics; refrigerators, low-temperature detectors, and other low-temperature equipment)  
  73.21.-b (Electron states and collective excitations in multilayers, quantum wells, mesoscopic, and nanoscale systems)  
  85.60.Gz (Photodetectors (including infrared and CCD detectors))  
Fund: 

Project supported by the National Key R&D Program of China (Grant No. 2017YFF0106302), the National Basic Research Program of of China (Grant No. 2014CB339803), the National Natural Science Foundation of China (Grant Nos. 61404150, 61405233, and 61604161), and the Shanghai Municipal Commission of Science and Technology, China (Grant Nos. 15JC1403800, 17ZR1448300, and 17YF1429900).

Corresponding Authors:  Juncheng Cao     E-mail:  jccao@mail.sim.ac.cn

Cite this article: 

Zhenzhen Zhang(张真真), Zhanglong Fu(符张龙), Xuguang Guo(郭旭光), Juncheng Cao(曹俊诚) 4.3 THz quantum-well photodetectors with high detection sensitivity 2018 Chin. Phys. B 27 030701

[1] Liu H C, Song C Y, SpringThorpe A J and Cao J C 2004 Appl. Phys. Lett. 84 4068
[2] Graf M, ScalariG, Hofstetter D, FaistJ, BeereH, Linfield E, Ritchie D and Davies G 2004 Appl. Phys. Lett. 84 475
[3] Luo H, Liu H C, Song C Y and Wasilewski Z R 2005 Appl. Phys. Lett. 86 231103
[4] Liu H C, Luo H, Song C Y, Wasilewski Z R, SpringThorpe A J and Cao J C 2008 IEEE J Sel. Top Quant. 14 374
[5] Ershov M, Liu H C and Schmitt L M 1997 J. Appl. Phys. 82 1446
[6] Thibaudeau L, Bois P and Duboz J Y 1996 J. Appl. Phys. 79 446
[7] Liu H C, Li J, Wasilewski Z R and Buchanan M 1995 Electron. Lett. 31 832
[8] JiaJ Y, Gao H, HaoM R, Wang T M, Shen W Z, Zhang Y H, Cao J C, Guo X G and Schneider H 2014 J. Appl. Phys. 116 154501
[9] Ferguson B and Zhang X C 2002 Nat. Mater. 1 26
[10] Federici J F, Schulkin B, Huang F, Gary D, Barat R, Oliveira F and Zimdars D 2005 Semicond. Sci. Tech. 20 S266
[11] Li H, Wan W J, Tan Z Y, Fu Z L, Wang H X, Zhou T, Li Z P, Wang C, Guo X G and Cao J C 2017 Sci. Rep. 7 3452
[12] Zhou T 2017 AIP Adv. 7 105215
[13] Liu H C 1992 Appl. Phys. Lett. 60 1507
[14] Liu H C and Capasso F 2000 Intersubband Transition in Quantum Wells:Physics and Device Applications I (San Diego:Academic)
[15] Delga A, Doyennette L, Buffaz A, Berger V, Jasnot F R, de Vaulchier L A, Pere-Laperne N and Liu H C 2011 J. Appl. Phys. 110 013714
[16] GuoX G, Tan Z Y, Cao J C and Liu H C 2009 Appl. Phys. Lett. 94 201101
[17] Guo X G, Gu L L, Dong M, Cao J C, Liu H C and Guo F M 2013 J. Appl. Phys. 113 203109
[18] Guo X G, Cao J C, Zhang R, Tan Z Y and Liu H C 2013 IEEE J. Sel. Top Quant. 19 8500508
[19] GuoX G, Zhang R, Liu H C, SpringThorpe A J and Cao J C 2010 Appl. Phys. Lett. 97 021114
[20] On line available:http://www.infraredlaboratories.com/Home.html/
[21] GuL L, Zhang R, Tan Z Y, Wan W J, Yin R, Guo X G and Cao J C 2014 J. Phys. D:Appl. Phys. 47 165101
[22] Gomez A, Berger V, Pere-Laperne N and De Vaulchier L A 2008 Appl. Phys. Lett. 92 202110
[1] Spin transport properties for B-doped zigzag silicene nanoribbons with different edge hydrogenations
Jing-Fen Zhao(赵敬芬), Hui Wang(王辉), Zai-Fa Yang(杨在发), Hui Gao(高慧), Hong-Xia Bu(歩红霞), and Xiao-Juan Yuan(袁晓娟). Chin. Phys. B, 2022, 31(1): 017302.
[2] Comparison of resonant tunneling diodes grown on freestanding GaN substrates and sapphire substrates by plasma-assisted molecular-beam epitaxy
Xiang-Peng Zhou(周祥鹏), Hai-Bing Qiu(邱海兵), Wen-Xian Yang(杨文献), Shu-Long Lu(陆书龙), Xue Zhang(张雪), Shan Jin(金山), Xue-Fei Li(李雪飞), Li-Feng Bian(边历峰), and Hua Qin(秦华). Chin. Phys. B, 2021, 30(12): 127301.
[3] Negative differential resistance and quantum oscillations in FeSb2 with embedded antimony
Fangdong Tang(汤方栋), Qianheng Du(杜乾衡), Cedomir Petrovic, Wei Zhang(张威), Mingquan He(何明全), Liyuan Zhang(张立源). Chin. Phys. B, 2019, 28(3): 037104.
[4] Effects of edge hydrogenation and Si doping on spin-dependent electronic transport properties of armchair boron-phosphorous nanoribbons
Hong Zhao(赵虹), Dan-Dan Peng(彭丹丹), Jun He(何军), Xin-Mei Li(李新梅), Meng-Qiu Long(龙孟秋). Chin. Phys. B, 2018, 27(10): 108504.
[5] Tunneling field effect transistors based on in-plane and vertical layered phosphorus heterostructures
Shenyan Feng(冯申艳), Qiaoxuan Zhang(张巧璇), Jie Yang(杨洁), Ming Lei(雷鸣), Ruge Quhe(屈贺如歌). Chin. Phys. B, 2017, 26(9): 097401.
[6] High performance oscillator with 2-mW output power at 300 GHz
Wu De-Qi (武德起), Ding Wu-Chang (丁武昌), Yang Shan-Shan (杨姗姗), Jia Rui (贾锐), Jin Zhi (金智), Liu Xin-Yu (刘新宇). Chin. Phys. B, 2014, 23(5): 057204.
[7] Negative differential resistance behaviour in N-doped crossed graphene nanoribbons
Chen Ling-Na(陈灵娜), Ma Song-Shan(马松山), Ouyang Fang-Ping(欧阳方平), Wu Xiao-Zan(伍小赞), Xiao Jin(肖金), and Xu Hui(徐慧). Chin. Phys. B, 2010, 19(9): 097301.
[8] Relationship between the electric performance and the photoluminescence spectra of resonant tunnelling diodes
Zhang Xiao-Xin (张晓昕), Zeng Yi-Ping (曾一平), Wang Xiao-Guang (王晓光), Wang Bao-Qiang (王保强), Zhu Zhan-Ping (朱占平). Chin. Phys. B, 2004, 13(9): 1560-1563.
No Suggested Reading articles found!