CONDENSED MATTER: STRUCTURAL, MECHANICAL, AND THERMAL PROPERTIES |
Prev
Next
|
|
|
Selective linear etching of monolayer black phosphorus using electron beams |
Yuhao Pan(潘宇浩)1, Bao Lei(雷宝)2,1, Jingsi Qiao(乔婧思)1, Zhixin Hu(胡智鑫)3, Wu Zhou(周武)2, Wei Ji(季威)1 |
1 Department of Physics and Beijing Key Laboratory of Optoelectronic Functional Materials&Micro-Nano Devices, Renmin University of China, Beijing 100872, China;
2 School of Physical Sciences and CAS Center for Excellence in Topological Quantum Computation, University of Chinese Academy of Sciences, Beijing 100190, China;
3 Center for Joint Quantum Studies and Department of Physics, Institute of Science, Tianjin University, Tianjin 300350, China |
|
|
Abstract Point and line defects are of vital importance to the physical and chemical properties of certain two-dimensional (2D) materials. Although electron beams have been demonstrated to be capable of creating single-and multi-atom defects in 2D materials, the products are often random and difficult to predict without theoretical inputs. In this study, the thermal motion of atoms and electron incident angle were additionally considered to study the vacancy evolution in a black phosphorus (BP) monolayer by using an improved first-principles molecular dynamics method. The P atoms in monolayer BP tend to be struck away one by one under an electron beam within the displacement threshold energy range of 8.55-8.79 eV, which ultimately induces the formation of a zigzag-like chain vacancy. The chain vacancy is a thermodynamically metastable state and is difficult to obtain by conventional synthesis methods because the vacancy formation energy of 0.79 eV/edge atom is higher than the typical energy in monolayer BP. Covalent-like quasi-bonds and a charge density wave are formed along the chain vacancy, exhibiting rich electronic properties. This work proposes a theoretical protocol for simulating a complete elastic collision process of electron beams with 2D layers and will facilitate the establishment of detailed theoretical guidelines for experiments on 2D material etching using focused high-energy electron beams.
|
Received: 08 April 2020
Revised: 12 May 2020
Accepted manuscript online:
|
PACS:
|
68.65.-k
|
(Low-dimensional, mesoscopic, nanoscale and other related systems: structure and nonelectronic properties)
|
|
68.37.Ma
|
(Scanning transmission electron microscopy (STEM))
|
|
68.35.bg
|
(Semiconductors)
|
|
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 11622437, 61674171, 11804247, and 11974422), the Strategic Priority Research Program of Chinese Academy of Sciences (Grant No. XDB30000000), Key Research Program of Frontier Sciences, Chinese Academy of Sciences (B.L, W.Z.), the Fundamental Research Funds for the Central Universities, China, and the Research Funds of Renmin University of China[Grant Nos. 16XNLQ01 and No. 19XNQ025 (W.J.)]. |
Corresponding Authors:
Wei Ji
E-mail: wji@ruc.edu.cn
|
Cite this article:
Yuhao Pan(潘宇浩), Bao Lei(雷宝), Jingsi Qiao(乔婧思), Zhixin Hu(胡智鑫), Wu Zhou(周武), Wei Ji(季威) Selective linear etching of monolayer black phosphorus using electron beams 2020 Chin. Phys. B 29 086801
|
[1] |
Katsnelson M I 2007 Mater. Today 10 20
|
[2] |
Novoselov K S, et al. 2005 Nature 438 197
|
[3] |
Geim A K and Novoselov K S 2007 Nat. Mater. 6 183
|
[4] |
Hwang E H and Das Sarma S 2008 Phys. Rev. B 77 115449
|
[5] |
Geim A K and Grigorieva I V 2013 Nature 499 419
|
[6] |
Wang Z M 2014 MoS2:Materials, Physics, and Devices (Berlin:Springer)
|
[7] |
Wang Q H, Kalantar-Zadeh K, Kis A, Coleman J N and Strano M S 2012 Nat. Nanotechnol. 7 699
|
[8] |
Fivaz R and Mooser E 1967 Phys. Rev. 163 743
|
[9] |
Vogt P, et al. 2012 Phys. Rev. Lett. 108 155501
|
[10] |
Houssa M, et al. 2011 Appl. Phys. Lett. 98 223107
|
[11] |
Bianco E, et al. 2013 ACS Nano 7 4414
|
[12] |
Berger C, et al. 2004 J. Phys. Chem. B 108 19912
|
[13] |
Liao L, et al. 2010 Nature 467 305
|
[14] |
Schwierz F 2010 Nat. Nanotechnol. 5 487
|
[15] |
Radisavljevic B, Radenovic A, Brivio J, Giacometti V and Kis A 2011 Nat. Nanotechnol. 6 147
|
[16] |
Wang H, et al. 2012 Nano Lett. 12 4674
|
[17] |
Yoon Y, Ganapathi K and Salahuddin S 2011 Nano Lett. 11 3768
|
[18] |
Xia F, Farmer D B, Lin Y M and Avouris P 2010 Nano Lett. 10 715
|
[19] |
Popov I, Seifert G and Tománek D 2012 Phys. Rev. Lett. 108 156802
|
[20] |
Banhart F, Kotakoski J and Krasheninnikov A V 2011 ACS Nano 5 26
|
[21] |
Hong J, et al. 2015 Nat. Commun. 6 6293
|
[22] |
Hong J, et al. 2017 Nano Lett. 17 3383
|
[23] |
Hong J, et al. 2017 Nano Lett. 17 6653
|
[24] |
Zhang C, et al. 2019 ACS Nano 13 1595
|
[25] |
Zhang S, et al. 2017 Phys. Rev. Lett. 119 046101
|
[26] |
Zhou W, et al. 2013 Nano Lett. 13 2615
|
[27] |
Susi T, Meyer J C and Kotakoski J 2017 Ultramicroscopy 180 163
|
[28] |
Zhao X, et al. 2017 MRS Bull. 42 667
|
[29] |
Ye G, et al. 2016 Nano Lett. 16 1097
|
[30] |
Ci L, et al. 2008 Nano Res. 1 116
|
[31] |
Kotakoski J, Mangler C and Meyer J C 2014 Nat. Commun. 5 3991
|
[32] |
Meyer J C, et al. 2012 Phys. Rev. Lett. 108 196102
|
[33] |
Komsa H P and Krasheninnikov A V 2015 Phys. Rev. B 91 125304
|
[34] |
Zhao J, et al. 2017 Small 13 1601930
|
[35] |
Susi T, et al. 2014 Phys. Rev. Lett. 113 115501
|
[36] |
Chuvilin A, Meyer J.C, Algara-Siller G amd Kaiser U. 2009 New J. Phys. 11 083019
|
[37] |
Zhang S Y, X X Q, Hua X M, Xie Z L, Liu B, Chen P, Han P, Lu H, Zhang R and Zheng Y D 2014 Chin. Phys. Lett. 31 056802
|
[38] |
Deng Y, Wang Y and Li X L 2012 Chin. Phys. Lett. 29 086801
|
[39] |
Komsa H P, Kurasch S, Lehtinen O, Kaiser U and Krasheninnikov A V 2013 Phys. Rev. B 88 035301
|
[40] |
Qiao J, Kong X, Hu Z X, Yang F and Ji W 2014 Nat. Commun. 5 4475
|
[41] |
Hu Z X, Kong X, Qiao J, Normand B and Ji W 2016 Nanoscale 8 2740
|
[42] |
Jia Q, Kong X, Qiao J and Ji W 2016 Sci. Chin. Phys. Mech. & Astron. 59 696811
|
[43] |
Ren Y 2017 Chin. Phys. Lett. 34 027302
|
[44] |
Cheng F 2016 Chin. Phys. Lett. 33 057301
|
[45] |
Qiao J, Zhou L and Ji W 2017 Chin. Phys. B 26 036803
|
[46] |
Xiao Z, et al. 2017 Nano Res. 10 2519
|
[47] |
Vierimaa V, Krasheninnikov A V and Komsa H P 2016 Nanoscale 8 7949
|
[48] |
Blöchl P E 1994 Phys. Rev. B 50 17953
|
[49] |
Kresse G and Furthmüller J 1996 Phys. Rev. B 54 11169
|
[50] |
Klimeš J, Bowler D R and Michaelides A 2011 Phys. Rev. B 83 195131
|
[51] |
Komsa H P, et al. 2012 Phys. Rev. Lett. 109 035503
|
[52] |
McKinley W A and Feshbach H 1948 Phys. Rev. 74 1759
|
[53] |
Egerton, R F 2012 Microsc. Res. Technique 75 1550
|
[54] |
Dellby N, et al. 2011 Eur. Phys. J.-Appl. Phys. 54 33505
|
[55] |
Qiao J, et al. 2018 Sci. Bull. 63 159
|
[56] |
Huo L H and Xie G F 2019 Acta Phys. Sin. 68 086501(in Chinese)
|
[57] |
Balandin A A, et al. 2008 Nano Lett. 8 902
|
[58] |
Grosvenor A P, Biesinger M C, Smart R S C and McIntyre N S 2006 Surf. Sci. 600 1771
|
[59] |
Hilgendorff M and Sundström V 1998 J. Phys. Chem. B 102 10505
|
[60] |
Willets K A and Van Duyne R P 2007 Annu. Rev. Phys. Chem. 58 267
|
[61] |
Kretschmer S, Lehnert T, Kaiser U and Krasheninnikov A V 2020 Nano Lett. 20 2865
|
[62] |
Ji W, Lu Z Y and Gao H 2006 Phys. Rev. Lett. 97 246101
|
[63] |
Anggara K, Leung L, Timm M J, Hu Z and Polanyi J C 2018 Sci. Adv. 4 eaau2821
|
[64] |
Chu W, et al. 2016 J. Am. Chem. Soc. 138 13740
|
[65] |
Furche F and Ahlrichs R 2002 J. Chem. Phys. 117 7433
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|