Please wait a minute...
Chin. Phys. B, 2018, Vol. 27(12): 120305    DOI: 10.1088/1674-1056/27/12/120305
SPECIAL TOPIC—60th Anniversary of Department of Physics of Nanjing Normal University Prev   Next  

The entanglement of deterministic aperiodic quantum walks

Ting-Ting Liu(刘婷婷)1, Ya-Yun Hu(胡亚运)2, Jing Zhao(赵静)3, Ming Zhong(钟鸣)1, Pei-Qing Tong(童培庆)1,4
1 Department of Physics and Institute of Theoretical Physics, Nanjing Normal University, Nanjing 210023, China;
2 Physics Department, 104 Davey Laboratory, Pennsylvania State University, University Park, PA 16802, USA;
3 College of Mathematical and Physical Sciences, Anshun University, Anshun 561000, China;
4 Laboratory for Numerical Simulation of Large Scale Complex Systems, Nanjing Normal University, Nanjing 210023, China
Abstract  

We study the entanglement between the internal (coin) and the external (position) degrees of freedom in the dynamic and the static deterministic aperiodic quantum walks (QWs). For the dynamic (static) aperiodic QWs, the coin depends on the time (position) and takes two coins C(α) and C(β) arranged in the two classes of generalized Fibonacci (GF) and the Thue-Morse (TM) sequences. We found that for the dynamic QWs, the entanglement of three kinds of the aperiodic QWs are close to the maximal value, which are all much larger than that of the homogeneous QWs. Further, the first class of GF (1st GF) QWs can achieve the maximum entangled state, which is similar to that of the dynamic disordered QWs. And the entanglement of 1st GF QWs is greater than that of the TM QWs, being followed closely by the entanglement of the second class of GF (2nd GF) QWs. For the static QWs, the entanglement of three kinds of the aperiodic QWs are also close to the maximal value and 1st GF QWs can achieve the maximum entangled state. The entanglement of the TM QWs is between 1st GF QWs and 2nd GF QWs. However, the entanglement of the static disordered QWs is less than that of three kinds of the aperiodic QWs. This is different from those of the dynamic QWs. From these results, we can conclude that the dynamic and static 1st GF QWs can also be considered as maximal entanglement generators.

Keywords:  quantum walks      quantum entanglement      aperiodic      entanglement production  
Received:  18 August 2018      Revised:  09 October 2018      Accepted manuscript online: 
PACS:  03.67.Bg (Entanglement production and manipulation)  
  03.65.Ud (Entanglement and quantum nonlocality)  
  61.44.Br (Quasicrystals)  
  05.40.Fb (Random walks and Levy flights)  
Fund: 

Project supported by the National Natural Science Foundation of China (Grant Nos. 11575087 and 11175087).

Corresponding Authors:  Ming Zhong, Pei-Qing Tong     E-mail:  mzhong@njnu.edu.cn;pqtong@njnu.edu.cn

Cite this article: 

Ting-Ting Liu(刘婷婷), Ya-Yun Hu(胡亚运), Jing Zhao(赵静), Ming Zhong(钟鸣), Pei-Qing Tong(童培庆) The entanglement of deterministic aperiodic quantum walks 2018 Chin. Phys. B 27 120305

[1] Aharonov Y, Davidovich L and Zagury N 1993 Phys. Rev. A 48 1687
[2] Aharonov D, Ambainis A, Kempe J and Vazirani U 2001 Proc. the 33th STOC, New York, p. 50
[3] Childs A M, Farhi E and Gutmann S 2002 Quantum Inf. Process. 1 35
[4] Kempe J 2003 Contemp. Phys. 44 307
[5] Venegas-Andraca S E 2012 Quantum Inf. Process. 11 1015
[6] Ambainis A 2003 Int. J. Quantum Inf. 01 507
[7] Childs A M, Cleve R, Deotto E, Farhi E, Gutmann S and Spielman D A 2003 In Proceedings of the thirty-fifth annual ACM symposium on theory of computing p. 59
[8] Shenvi N, Kempe J and Whaley K A 2003 Phys. Rev. A 67 052307
[9] Ambainis A 2004 Proceedings of the 45th annual IEEE symposium on foundations of computer science p. 22
[10] Regensburger A, Bersch C, Hinrichs B, Onishchukov G, Schreiber A, Silberhorn C and Peschel U 2011 arXiv: 1104. 0105
[11] Kurzyński P 2008 Phys. Lett. A 372 6125
[12] Genske M, Alt W, Steffen A, Werner A H, Werner R F, Meschede D and Alberti A 2013 Phys. Rev. Lett. 110 190601
[13] Karski M, Förster L, Choi J M, AltW, Widera A and Meschede D 2009 Phys. Rev. Lett. 102 053001
[14] Xue P, Sanders B and Leibfried D 2009 Phys. Rev. Lett. 103 183602
[15] Schmitz H, Matjeschk R, Schneider C, Glueckert J, Enderlein M, Huber T and Schaetz T 2009 Phys. Rev. Lett. 103 090504
[16] Zähringer F, Kirchmair G, Gerritsma R, Solano E, Blatt R and Roos C F 2010 Phys. Rev. Lett. 104 100503
[17] Peruzzo A, Lobino M, Matthews J C, Matsuda N, Politi A, Poulios K, Zhou X Q, Lahini Y, Ismail N, Worhoff K, Bromberg Y, Silberberg Y, Thompson M G and OBrien J L 2010 Science 329 1500
[18] Sansoni L, Sciarrino F, Vallone G, Mataloni P, Crespi A, Ramponi R and Osellame R 2012 Phys. Rev. Lett. 108 010502
[19] Schreiber A, Gabris A, Rohde P P, Laiho K, Štefaňák M, Potocek V, Hamilton C, Jex I and Silberhorn C 2012 Science 336 55
[20] Schreiber A, Cassemiro K N, Potoček V, Gábris A, Mosley P J, Andersson E, Jex I and Silberhorn C 2010 Phys. Rev. Lett. 104 050502
[21] Broome M A, Fedrizzi A, Lanyon B P, Kassal I, AspuruGuzik A and White A G 2010 Phys. Rev. Lett. 104 153602
[22] Wang X P, Xiao L, Qiu X Z, Wang K K, Yi W and Xue P 2018 Phys. Rev. A 98 013835
[23] Nielsen M A and Chuang I L 2000 Quantum computation and quantum information (Cambridge: Cambridge University Press)
[24] Horodecki R, Horodecki P, Horodecki M and Horodecki K 2009 Rev. Mod. Phys. 81 865
[25] Fei S M 2010 Physics 39 816 (in Chinese)
[26] Cheng S, Chen J and Wang L 2017 Physics 46 416 (in Chinese)
[27] Schrödinger E 1935 Proc. Cambridge Philos. Soc. 31 555
[28] Einstein A, Podolsky B and Rosen N 1935 Phys. Rev. 47 777
[29] Carneiro I, Loo M, Xu X, Girerd M, Kendon V and Knight P L 2005 New J. Phys. 7 156
[30] Vieira R, Amorim E P M and Rigolin G 2013 Phys. Rev. Lett. 111 180503
[31] Vieira R, Amorim E P M and Rigolin G 2014 Phys. Rev. A 89 042307
[32] Chandrashekar C M 2012 arXiv: 1212.5984.
[33] Shechtman D, Blech I, Gratias D and Cahn J W 1984 Phys. Rev. Lett. 53 1951
[34] Merlin R, Bajema K, Clarks R, Juang F Y and Bhattacharya P K 1985 Phys. Rev. Lett. 55 1768
[35] Todd J, Merlin R and Clarks R 1986 Phys. Rev. Lett. 57 1157
[36] Dharma-wardana N M C, MacDonald A H, Lockwood D J, Baribeau J M and Houghton D C 1987 Phys. Rev. Lett. 58 1761
[37] Kohmoto M, Kadanoff L P and Tang C 1983 Phys. Rev. Lett. 50 1870
[38] Hiramoto H and Kohmoto M 1992 Int. J. Mod. Phys. B 6 281
[39] Luck J M 1993 J. Stat. Phys. 72 417
[40] Ribeiro P, Milman P and Mosseri R 2004 Phys. Rev. Lett. 93 190503
[41] Romanelli A 2009 Physica A 388 3985
[42] Ampadu C 2012 Commun. Theor. Phys. 58 220
[43] Molfetta G D, Honter L, Luo B, Wada T and Shikano Y 2015 Quantum Stud.: Math. Found. 2 243
[44] Ampadu C 2011 arXiv: 1108.5198.
[45] Gullo N Lo, Ambarish C V, Busch Th, Dell'Anna L and Chandrashekar C M 2017 Phys. Rev. E 96 012111
[46] Wang W J and Tong P Q 2016 Acta Phys. Sin. 65 160501 (in Chinese)
[47] Gumbs G and Ali M K 1988 Phys. Rev. Lett. 60 1081
[48] Holzer M 1988 Phys. Rev. B 38 5756
[49] Barghathi H, Nozadze D and Vojta T 2014 Phys. Rev. E 89 012112
[50] Sánchez F, Sánchez V and Wang C 2016 J. Non-Cryst. Solids 450 194
[51] Tamura S and Nori F 1989 Phys. Rev. B 40 9790
[52] Riklund R, Severin M and Liu Y 1987 Int. J. Mod. Phys. B 1 121
[53] Allouche J P and Shallit J 1999 Proc. SETA 98 1
[54] Moretti L and Mocella V 2007 Opt. Express 15 15314
[55] Burrowst B L and Sulstoni K W 1991 J. Phys A: Math. Gen. 24 3979
[56] Xu X P and Liu F 2008 Phys. Rev. A 77 062318
[57] Li M, Zhang Y S and Guo G C 2013 Chin. Phys. Lett. 30 020304
[58] Zhang R, Qin H, Tang B and Xue P 2013 Chin. Phys. B 22 110312
[59] Zhang R, Xu Y Q and Xue P 2015 Chin. Phys. B 24 010303
[60] Zhao J, Hu Y Y and Tong P Q 2015 Chin. Phys. Lett. 32 060501
[1] Entanglement and thermalization in the extended Bose-Hubbard model after a quantum quench: A correlation analysis
Xiao-Qiang Su(苏晓强), Zong-Ju Xu(许宗菊), and You-Quan Zhao(赵有权). Chin. Phys. B, 2023, 32(2): 020506.
[2] Characterizing entanglement in non-Hermitian chaotic systems via out-of-time ordered correlators
Kai-Qian Huang(黄恺芊), Wei-Lin Li(李蔚琳), Wen-Lei Zhao(赵文垒), and Zhi Li(李志). Chin. Phys. B, 2022, 31(9): 090301.
[3] Nonreciprocal coupling induced entanglement enhancement in a double-cavity optomechanical system
Yuan-Yuan Liu(刘元元), Zhi-Ming Zhang(张智明), Jun-Hao Liu(刘军浩), Jin-Dong Wang(王金东), and Ya-Fei Yu(於亚飞). Chin. Phys. B, 2022, 31(9): 094203.
[4] THz wave generation by repeated and continuous frequency conversions from pump wave to high-order Stokes waves
Zhongyang Li(李忠洋), Qianze Yan(颜钤泽), Pengxiang Liu(刘鹏翔), Binzhe Jiao(焦彬哲), Gege Zhang(张格格), Zhiliang Chen(陈治良), Pibin Bing(邴丕彬), Sheng Yuan(袁胜), Kai Zhong(钟凯), and Jianquan Yao(姚建铨). Chin. Phys. B, 2022, 31(7): 074209.
[5] Efficient quantum private comparison protocol based on one direction discrete quantum walks on the circle
Jv-Jie Wang(王莒杰), Zhao Dou(窦钊), Xiu-Bo Chen(陈秀波), Yu-Ping Lai(赖裕平), and Jian Li(李剑). Chin. Phys. B, 2022, 31(5): 050308.
[6] Dynamics and intermittent stochastic stabilization of a rumor spreading model with guidance mechanism in heterogeneous network
Xiaojing Zhong(钟晓静), Yukun Yang(杨宇琨), Runqing Miao(苗润青), Yuqing Peng(彭雨晴), and Guiyun Liu(刘贵云). Chin. Phys. B, 2022, 31(4): 040205.
[7] Bright 547-dimensional Hilbert-space entangled resource in 28-pair modes biphoton frequency comb from a reconfigurable silicon microring resonator
Qilin Zheng(郑骑林), Jiacheng Liu(刘嘉成), Chao Wu(吴超), Shichuan Xue(薛诗川), Pingyu Zhu(朱枰谕), Yang Wang(王洋), Xinyao Yu(于馨瑶), Miaomiao Yu(余苗苗), Mingtang Deng(邓明堂), Junjie Wu(吴俊杰), and Ping Xu(徐平). Chin. Phys. B, 2022, 31(2): 024206.
[8] Disorder in parity-time symmetric quantum walks
Peng Xue(薛鹏). Chin. Phys. B, 2022, 31(1): 010311.
[9] Influences of spin-orbit interaction on quantum speed limit and entanglement of spin qubits in coupled quantum dots
M Bagheri Harouni. Chin. Phys. B, 2021, 30(9): 090301.
[10] Dynamic modeling and aperiodically intermittent strategy for adaptive finite-time synchronization control of the multi-weighted complex transportation networks with multiple delays
Ning Li(李宁), Haiyi Sun(孙海义), Xin Jing(靖新), and Zhongtang Chen(陈仲堂). Chin. Phys. B, 2021, 30(9): 090507.
[11] Nonlocal advantage of quantum coherence and entanglement of two spins under intrinsic decoherence
Bao-Min Li(李保民), Ming-Liang Hu(胡明亮), and Heng Fan(范桁). Chin. Phys. B, 2021, 30(7): 070307.
[12] Entanglement properties of GHZ and W superposition state and its decayed states
Xin-Feng Jin(金鑫锋), Li-Zhen Jiang(蒋丽珍), and Xiao-Yu Chen(陈小余). Chin. Phys. B, 2021, 30(6): 060301.
[13] High-efficiency terahertz wave generation with multiple frequencies by optimized cascaded difference frequency generation
Zhongyang Li(李忠洋), Binzhe Jiao(焦彬哲), Wenkai Liu(刘文锴), Qingfeng Hu(胡青峰), Gege Zhang(张格格), Qianze Yan(颜钤泽), Pibin Bing(邴丕彬), Fengrui Zhang(张风蕊), Zhan Wang(王湛), and Jianquan Yao(姚建铨). Chin. Phys. B, 2021, 30(4): 044211.
[14] Quantifying entanglement in terms of an operational way
Deng-Hui Yu(于登辉) and Chang-Shui Yu(于长水). Chin. Phys. B, 2021, 30(2): 020302.
[15] Reversion of weak-measured quantum entanglement state
Shao-Jiang Du(杜少将), Yonggang Peng(彭勇刚), Hai-Ran Feng(冯海冉), Feng Han(韩峰), Lian-Wu Yang(杨连武), Yu-Jun Zheng(郑雨军). Chin. Phys. B, 2020, 29(7): 074202.
No Suggested Reading articles found!