Please wait a minute...
Chin. Phys. B, 2018, Vol. 27(12): 120304    DOI: 10.1088/1674-1056/27/12/120304
GENERAL Prev   Next  

Quantum steering in Heisenberg models with Dzyaloshinskii-Moriya interactions

Hui-Zhen Li(李慧贞), Rong-Sheng Han(韩榕生), Ye-Qi Zhang(张业奇), Liang Chen(陈亮)
Mathematics and Physics Department, North China Electric Power University, Beijing 102206, China
Abstract  

In this work, we study the quantum steering in two-qubit Heisenberg models with Dzyaloshinskii-Moriya (DM) interaction and an external magnetic field. We find that the steerable weight (SW) and the critical temperature where SW→0 can be enhanced by the DM interactions. In the special case where the magnetic field is vanishing and the two spins are ferromagnetically coupled, the DM interaction can tune the zero-temperature SW from zero to a finite value. In addition to the SW, some other measurements used to identify the quantum entanglement and quantum correlations are investigated, i.e., the concurrence, the quantum discord, and the robustness of coherence. In the strong magnetic field limit, our results show that the SW is dramatically different from the other measurements.

Keywords:  quantum steering      Heisenberg model      Dzyaloshinskii-Moriya interaction  
Received:  15 July 2018      Revised:  09 September 2018      Accepted manuscript online: 
PACS:  03.67.-a (Quantum information)  
  03.65.Ud (Entanglement and quantum nonlocality)  
  75.10.Jm (Quantized spin models, including quantum spin frustration)  
  75.10.Pq (Spin chain models)  
Fund: 

Project supported by the National Natural Science Foundation of China (Grant Nos. 11504106, 11805065, 11247308, and 11447167) and the Fundamental Research Funds for the Central Universities, China (Grant Nos. 2018MS049 and 2018MS056).

Corresponding Authors:  Liang Chen     E-mail:  slchern@ncepu.edu.cn

Cite this article: 

Hui-Zhen Li(李慧贞), Rong-Sheng Han(韩榕生), Ye-Qi Zhang(张业奇), Liang Chen(陈亮) Quantum steering in Heisenberg models with Dzyaloshinskii-Moriya interactions 2018 Chin. Phys. B 27 120304

[1] Amico L, Fazio R, Osterloh A and Vedral V 2008 Rev. Mod. Phys. 80 517
[2] Wootters W K 1998 Phys. Rev. Lett. 80 2245
[3] Henderson L and Vedral V 2001 J. Phys. A: Math. Gen. 34 6899
[4] Ollivier H and Zurek W H 2001 Phys. Rev. Lett. 88 017901
[5] Ren X J and Fan H 2012 J. Phys. A: Math. Theor. 45 425304
[6] Ollivier H and Zurek W H 2001 Phys. Rev. Lett. 88 017901
[7] Napoli C, Bromley T R, Cianciaruso M, Piani M, Johnston N and Adesso G 2016 Phys. Rev. Lett. 116 150502
[8] Schrödinger E 1935 Math. Proc. Cambridge Philos. Soc. 31 555563
[9] Schrödinger E 1936 Math. Proc. Cambridge Philos. Soc. 32 446452
[10] Einstein A, Podolsky B and Rosen N 1935 Phys. Rev. 47 777
[11] Wiseman H M, Jones S J and Doherty A C 2007 Phys. Rev. Lett. 98 140402
[12] Jones S J, Wiseman H M and Doherty A C 2007 Phys. Rev. A 76 052116
[13] Skrzypczyk P, Navascués M and Cavalcanti D 2014 Phys. Rev. Lett. 112 180404
[14] Bowles J, Vértesi T, Quintino M T and Brunner N 2014 Phys. Rev. Lett. 112 200402
[15] He Q Y, Gong Q H and Reid M D 2015 Phys. Rev. Lett. 114 060402
[16] Kogias I, Lee A R, Ragy S and Adesso G 2015 Phys. Rev. Lett. 114 060403
[17] Bowles J, Francfort J, Fillettaz M, Hirsch F and Brunner N 2016 Phys. Rev. Lett. 116 130401
[18] Bowles J, Hirsch F, Quintino M T and Brunner N 2016 Phys. Rev. A 93 022121
[19] Sun W Y, Wang D, Shi J D and Ye L 2017 Sci. Rep. 7 39651
[20] Saunders D J, Jones S J, Wiseman H M and Pryde G J 2010 Nat. Phys. 6 845
[21] Kocsis S, Hall M J W, Bennet A J, Saunders D J and Pryde G J 2015 Nat. Commun. 6 5886
[22] Sun K, Xu J S, Ye X J, Wu Y C, Chen J L, Li C F and Guo G C 2014 Phys. Rev. Lett. 113 140402
[23] Sun K, Ye X J, Xu J S, Xu X Y, Tang J S, Wu Y C, Chen J L, Li C F and Guo G C 2016 Phys. Rev. Lett. 116 160404
[24] Wollmann S, Walk N, Bennet A J, Wiseman H M and Pryde G J 2016 Phys. Rev. Lett. 116 160403
[25] He Q, Rosales-Zárate L, Adesso G and Reid M D 2015 Phys. Rev. Lett. 115 180502
[26] Branciard C, Cavalcanti E G, Walborn S P, Scarani V and Wiseman, H M 2012 Phys. Rev. A 85 010301
[27] Paul T 2007 Math. Struct. Comp. Sci. 17 1115
[28] Qian L and Fang J X 2009 Commun. Theor. Phys. 52 817
[29] Li D C, Wang X P and Cao Z L 2008 J. Phys.: Condens. Matter 20 325229
[30] Ma X S, Cheng M T, Zhao G X and Wang A M 2012 Physica A 391 2500
[31] Werlang T and Rigolin G 2010 Phys. Rev. A 81 044101
[32] Gallego R and Aolita L 2015 Phys. Rev. X 5 041008
[33] Chen L and Zhang Y Q 2017 Europhys. Lett. 120 60007
[34] Khan S and Khan K 2016 Eur. Phys. J. Plus 131 1
[35] Zad H A and Movahhedian H 2017 Int. J. Mod. Phys. B 31 1750094
[1] Green's function Monte Carlo method combined with restricted Boltzmann machine approach to the frustrated J1-J2 Heisenberg model
He-Yu Lin(林赫羽), Rong-Qiang He(贺荣强), and Zhong-Yi Lu(卢仲毅). Chin. Phys. B, 2022, 31(8): 080203.
[2] Synchronization of nanowire-based spin Hall nano-oscillators
Biao Jiang(姜彪), Wen-Jun Zhang(张文君), Mehran Khan Alam, Shu-Yun Yu(于淑云), Guang-Bing Han(韩广兵), Guo-Lei Liu(刘国磊), Shi-Shen Yan(颜世申), and Shi-Shou Kang(康仕寿). Chin. Phys. B, 2022, 31(7): 077503.
[3] Quantum steerability of two qubits mediated by one-dimensional plasmonic waveguides
Ye-Qi Zhang(张业奇), Xiao-Ting Ding(丁潇婷), Jiao Sun(孙娇), and Tian-Hu Wang(王天虎). Chin. Phys. B, 2022, 31(12): 120305.
[4] Ground-state phase diagram of the dimerizedspin-1/2 two-leg ladder
Cong Fu(傅聪), Hui Zhao(赵晖), Yu-Guang Chen(陈宇光), and Yong-Hong Yan(鄢永红). Chin. Phys. B, 2021, 30(8): 087501.
[5] Magnetic excitations of diagonally coupled checkerboards
Tingting Yan(颜婷婷), Shangjian Jin(金尚健), Zijian Xiong(熊梓健), Jun Li(李军), and Dao-Xin Yao(姚道新). Chin. Phys. B, 2021, 30(10): 107505.
[6] Exact soliton solutions in anisotropic ferromagnetic wires with Dzyaloshinskii-Moriya interaction
Qiu-Yan Li(李秋艳), Dun-Zhao(赵敦), and Zai-Dong Li(李再东). Chin. Phys. B, 2021, 30(1): 017504.
[7] Lifshitz transition in triangular lattice Kondo-Heisenberg model
Lan Zhang(张欄), Yin Zhong(钟寅), Hong-Gang Luo(罗洪刚). Chin. Phys. B, 2020, 29(7): 077102.
[8] Generation of tripartite Einstein-Podolsky-Rosen steering by cascaded nonlinear process
Yu Liu(刘瑜), Su-Ling Liang(梁素玲), Guang-Ri Jin(金光日), You-Bin Yu(俞友宾), Jian-Yu Lan(蓝建宇), Xiao-Bin He(何小斌), Kang-Xian Guo(郭康贤). Chin. Phys. B, 2020, 29(5): 050301.
[9] Exciton dynamics in different aromatic hydrocarbon systems
Milica Rutonjski†, Petar Mali, Slobodan Rado\v sevi\'c, Sonja Gombar, Milan Panti\'c, and Milica Pavkov-Hrvojevi\'c. Chin. Phys. B, 2020, 29(10): 107103.
[10] Transferring information through a mixed-five-spin chain channel
Hamid Arian Zad, Hossein Movahhedian. Chin. Phys. B, 2016, 25(8): 080307.
[11] Quantum correlation dynamics in a two-qubit Heisenberg XYZ model with decoherence
Yang Guo-Hui (杨国晖), Zhang Bing-Bing (张冰冰), Li Lei (李磊). Chin. Phys. B, 2015, 24(6): 060302.
[12] Thermal entanglement of the Ising–Heisenberg diamond chain with Dzyaloshinskii–Moriya interaction
Qiao Jie (谯洁), Zhou Bin (周斌). Chin. Phys. B, 2015, 24(11): 110306.
[13] Characterizing the dynamics of quantum discord under phase damping with POVM measurements
Jiang Feng-Jian (蒋峰建), Ye Jian-Feng (叶剑锋), Yan Xin-Hu (闫新虎), Lü Hai-Jiang (吕海江). Chin. Phys. B, 2015, 24(10): 100304.
[14] Quantum correlations in a two-qubit anisotropic Heisenberg XYZ chain with uniform magnetic field
Li Lei (李磊), Yang Guo-Hui (杨国晖). Chin. Phys. B, 2014, 23(7): 070306.
[15] The effects of the Dzyaloshinskii-Moriya interaction on the ground-state properties of the XY chain in a transverse field
Zhong Ming (钟鸣), Xu Hui (徐卉), Liu Xiao-Xian (刘小贤), Tong Pei-Qing (童培庆). Chin. Phys. B, 2013, 22(9): 090313.
No Suggested Reading articles found!