Please wait a minute...
Chin. Phys. B, 2018, Vol. 27(12): 127203    DOI: 10.1088/1674-1056/27/12/127203
SPECIAL TOPIC—60th Anniversary of Department of Physics of Nanjing Normal University Prev   Next  

Valley-polarized pumping current in zigzag graphene nanoribbons with different spatial symmetries

Zhizhou Yu(俞之舟)1, Fuming Xu(许富明)2
1 Center for Quantum Transport and Thermal Energy Science, School of Physics and Technology, Nanjing Normal University, Nanjing 210023, China;
2 College of Physics and Energy, Shenzhen University, Shenzhen 518060, China
Abstract  

We numerically investigate the valley-polarized current in symmetric and asymmetric zigzag graphene nanoribbons (ZGNRs) by the adiabatic pump, and the effect of spatial symmetry is considered by introducing different pumping regions. It is found that pumping potentials with the symmetry Vp(x,y)=Vp(-x,y) can generate the largest valley-polarized current. The valley-polarized currents I13L with the pumping potential symmetry Vp(x,y)=Vp(x,-y) and I14L with Vp(x,y)=Vp(-x,-y) of symmetric ZGNRs are much smaller than those of asymmetric ZGNRs. We also find I13L and I14L of symmetric ZGNRs decrease and increase with the increasing pumping amplitude, respectively. Moreover, the dephasing effect from the electron-phonon coupling within the Buttiker dephasing scheme is introduced. The valley-polarized current of the symmetric ZGNRs with Vp(x,y)=Vp(x,-y) increases with the increase of the dephasing strength while that with Vp(x,y)=Vp(-x,-y) decreases as the dephasing strength increases.

Keywords:  valley polarization      charge pump      graphene      quantum transport  
Received:  27 August 2018      Revised:  05 October 2018      Accepted manuscript online: 
PACS:  72.80.Vp (Electronic transport in graphene)  
  73.63.-b (Electronic transport in nanoscale materials and structures)  
  73.23.-b (Electronic transport in mesoscopic systems)  
  85.75.-d (Magnetoelectronics; spintronics: devices exploiting spin polarized transport or integrated magnetic fields)  
Fund: 

Project supported by the National Natural Science Foundation of China (Grant Nos. 11704190, 11874221, and 11504240) and the Natural Science Foundation of Jiangsu Province, China (Grant No. BK20171030).

Corresponding Authors:  Zhizhou Yu     E-mail:  yuzhizhou@njnu.edu.cn

Cite this article: 

Zhizhou Yu(俞之舟), Fuming Xu(许富明) Valley-polarized pumping current in zigzag graphene nanoribbons with different spatial symmetries 2018 Chin. Phys. B 27 127203

[1] Rycerz A, Tworzyd?o J and Beenakker C W J 2007 Nat. Phys. 3 172
[2] Xiao D, Yao W and Niu Q 2007 Phys. Rev. Lett. 99 236809
[3] Peres N M R 2010 Rev. Mod. Phys. 82 2673
[4] Gunlycke D and White C T 2011 Phys. Rev. Lett. 106 136806
[5] Nebel C E 2013 Nat. Mater. 12 690
[6] Gorbachev R V, Song J C W, Yu G L, Kretinin A V, Withers F, Cao Y, Mishchenko A, Grigorieva I V, Novoselov K S, Levitov L S and Geim A K 2014 Science 346 448
[7] Xu X, Yao W, Xiao D and Heinz T F 2014 Nat. Phys. 10 343
[8] Zhang L and Wang J 2014 Chin. Phys. B 23 087202
[9] Tian H Y 2015 Chin. Phys. B 24 127301
[10] Chen X, Zhang L and Guo H 2015 Phys. Rev. B 92 155427
[11] Xu F, Yu Z, Ren Y, Wang B, Wei Y and Qiao Z 2016 New J. Phys. 18 113011
[12] Schaibley J R, Yu H, Clark G, Rivera P, Ross J S, Seyler K L, Yao W and Xu X 2016 Nat. Rev. Mater. 1 16055
[13] Yu Z, Xu F and Wang J 2016 Carbon 99 451
[14] Zhang L, Yu Z, Xu F and Wang J 2018 Carbon 126 183
[15] Shimazaki Y, Yamamoto M, Borzenets I V, Watanabe K, Taniguchi T and Tarucha S 2015 Nat. Phys. 11 1032
[16] Zhang L, Gong K, Chen J, Liu L, Zhu Y, Xiao D and Guo H 2014 Phys. Rev. B 90 195428
[17] Yu Y, Zhou Y, Wan L, Wang B, Xu F, Wei Y and Wang J 2016 Nanotechnology 27 185202
[18] Brouwer P W 1998 Phys. Rev. B 58 R10135
[19] Makhlin Y and Mirlin A D 2001 Phys. Rev. Lett. 87 276803
[20] Wang B, Wang J and Guo H 2003 Phys. Rev. B 68 155326
[21] Li C, Yu Y, Wei Y and Wang J 2007 Phys. Rev. B 75 035312
[22] Xu F, Xing Y and Wang J 2011 Phys. Rev. B 84 245323
[23] Xing Y, Wang B, Wei Y, Wang B and Wang J 2004 Phys. Rev. B 70 245324
[24] Zhang Q, Chan K S and Lin Z 2011 Appl. Phys. Lett. 98 032106
[25] Chen M N, Sheng L, Shen R, Sheng D N and Xing D Y 2015 Phys. Rev. B 91 125117
[26] Deng W Y, Luo W, Geng H, Chen M N, Sheng L and Xing D Y 2015 New J. Phys. 17 103018
[27] Marcellino J T J, Wang M J, Wang S K and Wang J 2018 Chin. Phys. B 27 057801
[28] Wang J and Liu J F 2017 Phys. Rev. B 95 205433
[29] Jiang Y, Low T, Chang K, Katsnelson M I and Guinea F 2013 Phys. Rev. Lett. 110 046601
[30] Wang J, Chan K S and Lin Z 2014 Appl. Phys. Lett. 104 013105
[31] Castro Neto A H, Guinea F, Peres N M R, Novoselov K S and Geim A K 2009 Rev. Mod. Phys. 81 109
[32] Büttiker M 1993 J. Phys.: Condens. Matter 5 9361
[33] Büttiker M 1986 Phys. Rev. B 33 3020
[34] Xing Y, Sun Q F and Wang J 2008 Phys. Rev. B 77 115346
[35] Li Z, Qian H, Wu J, Gu B L and Duan W 2008 Phys. Rev. Lett. 100 206802
[36] Wei Y, Wang J and Guo H 2000 Phys. Rev. B 62 9947
[1] Polarization Raman spectra of graphene nanoribbons
Wangwei Xu(许望伟), Shijie Sun(孙诗杰), Muzi Yang(杨慕紫), Zhenliang Hao(郝振亮), Lei Gao(高蕾), Jianchen Lu(卢建臣), Jiasen Zhu(朱嘉森), Jian Chen(陈建), and Jinming Cai(蔡金明). Chin. Phys. B, 2023, 32(4): 046803.
[2] Spin- and valley-polarized Goos-Hänchen-like shift in ferromagnetic mass graphene junction with circularly polarized light
Mei-Rong Liu(刘美荣), Zheng-Fang Liu(刘正方), Ruo-Long Zhang(张若龙), Xian-Bo Xiao(肖贤波), and Qing-Ping Wu(伍清萍). Chin. Phys. B, 2023, 32(3): 037301.
[3] Graphene metasurface-based switchable terahertz half-/quarter-wave plate with a broad bandwidth
Xiaoqing Luo(罗小青), Juan Luo(罗娟), Fangrong Hu(胡放荣), and Guangyuan Li(李光元). Chin. Phys. B, 2023, 32(2): 027801.
[4] Correlated states in alternating twisted bilayer-monolayer-monolayer graphene heterostructure
Ruirui Niu(牛锐锐), Xiangyan Han(韩香岩), Zhuangzhuang Qu(曲壮壮), Zhiyu Wang(王知雨), Zhuoxian Li(李卓贤), Qianling Liu(刘倩伶), Chunrui Han(韩春蕊), and Jianming Lu(路建明). Chin. Phys. B, 2023, 32(1): 017202.
[5] Adsorption dynamics of double-stranded DNA on a graphene oxide surface with both large unoxidized and oxidized regions
Mengjiao Wu(吴梦娇), Huishu Ma(马慧姝), Haiping Fang(方海平), Li Yang(阳丽), and Xiaoling Lei(雷晓玲). Chin. Phys. B, 2023, 32(1): 018701.
[6] Precisely controlling the twist angle of epitaxial MoS2/graphene heterostructure by AFM tip manipulation
Jiahao Yuan(袁嘉浩), Mengzhou Liao(廖梦舟), Zhiheng Huang(黄智恒), Jinpeng Tian(田金朋), Yanbang Chu(褚衍邦), Luojun Du(杜罗军), Wei Yang(杨威), Dongxia Shi(时东霞), Rong Yang(杨蓉), and Guangyu Zhang(张广宇). Chin. Phys. B, 2022, 31(8): 087302.
[7] Longitudinal conductivity in ABC-stacked trilayer graphene under irradiating of linearly polarized light
Guo-Bao Zhu(朱国宝), Hui-Min Yang(杨慧敏), and Jie Yang(杨杰). Chin. Phys. B, 2022, 31(8): 088102.
[8] Dual-channel tunable near-infrared absorption enhancement with graphene induced by coupled modes of topological interface states
Zeng-Ping Su(苏增平), Tong-Tong Wei(魏彤彤), and Yue-Ke Wang(王跃科). Chin. Phys. B, 2022, 31(8): 087804.
[9] Recent advances of defect-induced spin and valley polarized states in graphene
Yu Zhang(张钰), Liangguang Jia(贾亮广), Yaoyao Chen(陈瑶瑶), Lin He(何林), and Yeliang Wang(王业亮). Chin. Phys. B, 2022, 31(8): 087301.
[10] Dynamically tunable multiband plasmon-induced transparency effect based on graphene nanoribbon waveguide coupled with rectangle cavities system
Zi-Hao Zhu(朱子豪), Bo-Yun Wang(王波云), Xiang Yan(闫香), Yang Liu(刘洋), Qing-Dong Zeng(曾庆栋), Tao Wang(王涛), and Hua-Qing Yu(余华清). Chin. Phys. B, 2022, 31(8): 084210.
[11] Valley-dependent transport in strain engineering graphene heterojunctions
Fei Wan(万飞), X R Wang(王新茹), L H Liao(廖烈鸿), J Y Zhang(张嘉颜),M N Chen(陈梦南), G H Zhou(周光辉), Z B Siu(萧卓彬), Mansoor B. A. Jalil, and Yuan Li(李源). Chin. Phys. B, 2022, 31(7): 077302.
[12] Photoelectrochemical activity of ZnO:Ag/rGO photo-anodes synthesized by two-steps sol-gel method
D Ben Jemia, M Karyaoui, M A Wederni, A Bardaoui, M V Martinez-Huerta, M Amlouk, and R Chtourou. Chin. Phys. B, 2022, 31(5): 058201.
[13] Thermionic electron emission in the 1D edge-to-edge limit
Tongyao Zhang(张桐耀), Hanwen Wang(王汉文), Xiuxin Xia(夏秀鑫), Chengbing Qin(秦成兵), and Xiaoxi Li(李小茜). Chin. Phys. B, 2022, 31(5): 058504.
[14] TiS2-graphene heterostructures enabling polysulfide anchoring and fast electrocatalyst for lithium-sulfur batteries: A first-principles calculation
Wenyang Zhao(赵文阳), Li-Chun Xu(徐利春), Yuhong Guo(郭宇宏), Zhi Yang(杨致), Ruiping Liu(刘瑞萍), and Xiuyan Li(李秀燕). Chin. Phys. B, 2022, 31(4): 047101.
[15] Light-modulated electron retroreflection and Klein tunneling in a graphene-based n-p-n junction
Xingfei Zhou(周兴飞), Ziying Wu(吴子瀛), Yuchen Bai(白宇晨), Qicheng Wang(王起程), Zhentao Zhu(朱震涛), Wei Yan(闫巍), and Yafang Xu(许亚芳). Chin. Phys. B, 2022, 31(4): 047301.
No Suggested Reading articles found!