Please wait a minute...
Chin. Phys. B, 2018, Vol. 27(12): 124205    DOI: 10.1088/1674-1056/27/12/124205
ELECTROMAGNETISM, OPTICS, ACOUSTICS, HEAT TRANSFER, CLASSICAL MECHANICS, AND FLUID DYNAMICS Prev   Next  

Tunable plasmon-induced transparency based on asymmetric H-shaped graphene metamaterials

Yu-Chen Tian(田雨宸), Wei Jia(贾微), Pei-Wen Ren(任佩雯), Chun-Zhen Fan(范春珍)
School of Physical Science and Engineering, Zhengzhou University, Zhengzhou 450001, China
Abstract  

We propose and numerically demonstrate a tunable plasmon-induced transparency (PIT) phenomenon based on asymmetric H-shaped graphene metamaterials. The tunable PIT effect is realized through varying the applied polarization angles rather than changing the structure geometry. By simply adjusting the polarization angle, the transmission spectra can be controlled between the switch-on state and switch-off state. The physical mechanism of the induced transparency is revealed from magnetic dipole inductive coupling and phase coupling. Importantly, by varying the Fermi energy of the graphene or the refractive index of the substrate, the resonant position of the PIT can be dynamically controlled and the maximum modulation depths can reach up to 60.7%. The sensitivity (nm/RIU) of the graphene structure, which is the shift of resonance wavelength per unit change of refractive index, is 5619.56 nm/RIU. Moreover, we also extend our research to the x-axis symmetric H-shaped structure, and the tunable PIT transmission window can also be realized. The physical mechanism of the induced transparency is revealed from the electric dipole hybridization coupling. Our designed H-shaped graphene-based structures is a promising candidate for compact elements such as tunable sensors, switches and slow-light devices.

Keywords:  plasmon-induced transparency      graphene      polarization      optical filter  
Received:  10 July 2018      Revised:  29 August 2018      Accepted manuscript online: 
PACS:  42.50.Gy (Effects of atomic coherence on propagation, absorption, and Amplification of light; electromagnetically induced transparency and Absorption)  
  78.67.Pt (Multilayers; superlattices; photonic structures; metamaterials)  
  61.48.Gh (Structure of graphene)  
Fund: 

Project supported by the Key Science and Technology Research Project of Henan Province, China (Grant Nos. 162102210164 and 1721023100107) and the Natural Science Foundation of Henan Educational Committee, China (Grant No. 17A140002).

Corresponding Authors:  Chun-Zhen Fan     E-mail:  chunzhen@zzu.edu.cn

Cite this article: 

Yu-Chen Tian(田雨宸), Wei Jia(贾微), Pei-Wen Ren(任佩雯), Chun-Zhen Fan(范春珍) Tunable plasmon-induced transparency based on asymmetric H-shaped graphene metamaterials 2018 Chin. Phys. B 27 124205

[1] Boller K J, Imamoglu A and Harris S E 1991 Phys. Rev. Lett. 66 2593
[2] Harris S E 1997 Phys. Today 50 36
[3] Fleischhauer M, Physik F, Kaiserslautern D, Imamoglu A and Marangos J P 2005 Rev. Mod. Phys. 77 633
[4] Francesco M and Andrea A 2014 Chin. Phys. B 23 047809
[5] Wang X X, Sun J X, Sun Y H, Li A J, Chen Y, Zhang X J, Kang Z H, Wang L, Wang H H and Gao J Y 2015 Chin. Phys. B 24 074204
[6] Liu N, Langguth L, Weiss T, Kästel J, Fleischhauer M, Pfau T and Giessen H 2009 Nat. Mater. 8 758
[7] Luk'yanchuk B, Zheludev N I, Maier S A, Halas N J, Nordlander P, Giessen H and Chong C T 2010 Nat. Mater. 9 707
[8] Liu N, Weiss T, Mesch M, Langguth L, Eigenthaler U, Hirscher M, Sönnichsen C and Giessen H 2010 Nano Lett. 10 1103
[9] Yu Z, Chen H, Liu J J, Jing X F, Li X J and Hong Z 2017 Chin. Phys. B 26 077804
[10] Zhang Y D, Li J, Li H Y, Yao C B and Yuan P 2013 Opt. Laser Technol. 49 202
[11] Novikova I, Walsworth R L and Xiao Y H 2012 Laser Photon. Rev. 6 333
[12] He J N, Wang J Q, Ding P, Fan C Z, Arnaut L R and Liang E J 2015 Plasmonics 10 1115
[13] Chen J X, Wang P, Chen C C, Lu Y H, Ming H and Zhan Q W 2011 Opt. Express 19 5970
[14] Safavi-Naeini A H, Alegre T M, Chan J, Eichenfield M, Winger M, Lin Q, Hill J T, Chang D E and O 2011 Nature 472 69
[15] Wang L, Cai W, Zhang X Z, Liu P H, Xiang Y X and Xu J J 2013 Appl. Phys. Lett. 103 041604
[16] TianY C, Ding P and Fan C Z 2017 Opt. Eng. 56 107106
[17] Li H J, Wang L L, . Liu J Q and Huang Z R 2013 Appl. Phys. Lett. 103 211104
[18] Luo X, Qiu T, Lu W and Ni Z 2013 Mater. Sci. Eng. R 74 351
[19] Zhang W X, Liu Y X, Tian H, Xu J W and Feng L 2015 Chin. Phys. B 24 076104
[20] Vakil A and Engheta N 2011 Science 332 1291
[21] Koppens F H, Chang D E, Thongrattanasiri S and Garcia F J G 2011 Nano Lett. 11 3370
[22] Fu G L, Zhai X, Li H J, Xia S X and Wang L L 2017 J. Opt. 19 015001
[23] Fu G L, Zhai X, Li H J, Xia S X and Wang L L 2016 Plasmonics 11 1597
[24] Luo W W, Cai W, Xiang Y X, Wang L, Ren M X, Zhang X Z and Xu J J 2016 Opt. Express 24 5784
[25] Niu Y Y, Wang J C, Hu Z D and Zhang F 2018 Opt. Commu. 416 77
[26] Thongrattanasiri S, Koppens F H and Garcia F J 2012 Phys. Rev. Lett. 108 047401
[27] Yao Y, Kats M A, Genevet P, Yu N F, Song Y, Kong J and Capasso F 2013 Nano Lett. 13 1257
[28] Falkovsky L A and Pershoguba S S 2007 Phys. Rev. B 76 153410
[29] Gusynin V P, Sharapov S G and Carbotte J P 2007 J. Phys.: Condens. Matter 19 249
[30] Jablan M, Buljan H and Soljačić M 2009 Phys. Rev. B 80 245435
[31] Hanson G W 2008 J. Appl. Phys. 103 064302
[32] Novoselov K S, Geim A K, Morozov S V, Jiang D, Zhang Y, Dubonos S V, Grigorieva I V and Firsov A A 2004 Science 306 666
[33] Liu C, Liu P, Yang C and Lian B 2017 J. Opt. 19 115102
[34] Han M Y, Ozyilmaz B, Zhang Y and Kim P 2007 Phys. Rev. Lett. 98 206805
[35] Wu Y Q, Ye P D, Capano M A, Xuan Y, Sui Y, Qi M, Cooper J A, Shen T, Pandey D, Prakash G and Reifenberger R 2008 Appl. Phys. Lett. 92 092102
[36] Hu H, Zhai F, Hu D B, Li Z J, Bai B, Yang X X and Dai Q 2015 Nanoscale 7 19493
[37] Fang Z Y, Thongrattanasiri S, Schlather A, Liu Z, Ma L L, Wang Y M, Ajayan P M, Nordlander P, Halas N J and Javier Garcia de Abajo F 2013 ACS Nano 7 2388
[38] Yang R, Zhang L, Wang Y, Shi Z, Shi D, Gao H, Wang Y and Zhang G 2010 Adv. Mater. 22 4014
[39] Liu N, Kaiser S and Giessen H 2008 Adv. Mater. 20 4521
[40] Singh R, Plum E, Menzel C, Rockstuhl C, Azad A K, Cheville R A, Lederer F, Zhang W and Zheludev N I 2009 Phys. Rev. B 80 153104
[41] Ju L, Geng B, Horng J, Girit C, Martin M, Hao Z, Bechtel H A, Liang X G, Zettl A, Shen Y R and Wang F 2011 Nat. Nano 6 630
[42] Basu D, Gilbert M J, Register L F and Banerjee S K 2008 Appl. Phys. Lett. 92 042114
[43] Banadaki Y M and Srivastava A 2016 Electronics 5 11
[44] Wadhwa P, Kumar S, Kumar T J D, Shukla A and Kumar R 2018 J. Appl. Phys. 123 161416
[1] Polarization Raman spectra of graphene nanoribbons
Wangwei Xu(许望伟), Shijie Sun(孙诗杰), Muzi Yang(杨慕紫), Zhenliang Hao(郝振亮), Lei Gao(高蕾), Jianchen Lu(卢建臣), Jiasen Zhu(朱嘉森), Jian Chen(陈建), and Jinming Cai(蔡金明). Chin. Phys. B, 2023, 32(4): 046803.
[2] A kind of multiwavelength erbium-doped fiber laser based on Lyot filter
Zhehai Zhou(周哲海), Jingyi Wu(吴婧仪), Kunlong Min(闵昆龙), Shuang Zhao(赵爽), and Huiyu Li(李慧宇). Chin. Phys. B, 2023, 32(3): 034205.
[3] Atomic optical spatial mode extractor for vector beams based on polarization-dependent absorption
Hong Chang(常虹), Xin Yang(杨欣), Jinwen Wang(王金文), Yan Ma(马燕), Xinqi Yang(杨鑫琪), Mingtao Cao(曹明涛), Xiaofei Zhang(张晓斐), Hong Gao(高宏), Ruifang Dong(董瑞芳), and Shougang Zhang(张首刚). Chin. Phys. B, 2023, 32(3): 034207.
[4] Ferroelectricity induced by the absorption of water molecules on double helix SnIP
Dan Liu(刘聃), Ran Wei(魏冉), Lin Han(韩琳), Chen Zhu(朱琛), and Shuai Dong(董帅). Chin. Phys. B, 2023, 32(3): 037701.
[5] Spin- and valley-polarized Goos-Hänchen-like shift in ferromagnetic mass graphene junction with circularly polarized light
Mei-Rong Liu(刘美荣), Zheng-Fang Liu(刘正方), Ruo-Long Zhang(张若龙), Xian-Bo Xiao(肖贤波), and Qing-Ping Wu(伍清萍). Chin. Phys. B, 2023, 32(3): 037301.
[6] Bidirectional visible light absorber based on nanodisk arrays
Qi Wang(王琦), Fei-Fan Zhu(朱非凡), Rui Li(李瑞), Shi-Jie Zhang(张世杰), and Da-Wei Zhang(张大伟). Chin. Phys. B, 2023, 32(3): 030205.
[7] Correction of intense laser-plasma interactions by QED vacuum polarization in collision of laser beams
Wen-Bo Chen(陈文博) and Zhi-Gang Bu(步志刚). Chin. Phys. B, 2023, 32(2): 025204.
[8] Graphene metasurface-based switchable terahertz half-/quarter-wave plate with a broad bandwidth
Xiaoqing Luo(罗小青), Juan Luo(罗娟), Fangrong Hu(胡放荣), and Guangyuan Li(李光元). Chin. Phys. B, 2023, 32(2): 027801.
[9] A band-pass frequency selective surface with polarization rotation
Bao-Qin Lin(林宝勤), Wen-Zhun Huang(黄文准), Jian-Xin Guo(郭建新), Zhe Liu(刘哲), Yan-Wen Wang(王衍文), and Hong-Jun Ye(叶红军). Chin. Phys. B, 2023, 32(2): 024204.
[10] A simulation study of polarization characteristics of ultrathin CsPbBr3 nanowires with different cross-section shapes and sizes
Kang Yang(杨康), Huiqing Hu(胡回清), Jiaojiao Wang(王娇娇), Lingling Deng(邓玲玲), Yunqing Lu(陆云清), and Jin Wang(王瑾). Chin. Phys. B, 2023, 32(2): 024214.
[11] High efficiency of broadband transmissive metasurface terahertz polarization converter
Qiangguo Zhou(周强国), Yang Li(李洋), Yongzhen Li(李永振), Niangjuan Yao(姚娘娟), and Zhiming Huang(黄志明). Chin. Phys. B, 2023, 32(2): 024201.
[12] Multi-band polarization switch based on magnetic fluid filled dual-core photonic crystal fiber
Lianzhen Zhang(张连震), Xuedian Zhang(张学典), Xiantong Yu(俞宪同), Xuejing Liu(刘学静), Jun Zhou(周军), Min Chang(常敏), Na Yang(杨娜), and Jia Du(杜嘉). Chin. Phys. B, 2023, 32(2): 024205.
[13] First-principles prediction of quantum anomalous Hall effect in two-dimensional Co2Te lattice
Yuan-Shuo Liu(刘元硕), Hao Sun(孙浩), Chun-Sheng Hu(胡春生), Yun-Jing Wu(仵允京), and Chang-Wen Zhang(张昌文). Chin. Phys. B, 2023, 32(2): 027101.
[14] Evolution of polarization singularities accompanied by avoided crossing in plasmonic system
Yi-Xiao Peng(彭一啸), Qian-Ju Song(宋前举), Peng Hu(胡鹏), Da-Jian Cui(崔大健), Hong Xiang(向红), and De-Zhuan Han(韩德专). Chin. Phys. B, 2023, 32(1): 014201.
[15] A polarization mismatched p-GaN/p-Al0.25Ga0.75N/p-GaN structure to improve the hole injection for GaN based micro-LED with secondary etched mesa
Yidan Zhang(张一丹), Chunshuang Chu(楚春双), Sheng Hang(杭升), Yonghui Zhang(张勇辉),Quan Zheng(郑权), Qing Li(李青), Wengang Bi(毕文刚), and Zihui Zhang(张紫辉). Chin. Phys. B, 2023, 32(1): 018509.
No Suggested Reading articles found!