ELECTROMAGNETISM, OPTICS, ACOUSTICS, HEAT TRANSFER, CLASSICAL MECHANICS, AND FLUID DYNAMICS |
Prev
Next
|
|
|
Tunable plasmon-induced transparency based on asymmetric H-shaped graphene metamaterials |
Yu-Chen Tian(田雨宸), Wei Jia(贾微), Pei-Wen Ren(任佩雯), Chun-Zhen Fan(范春珍) |
School of Physical Science and Engineering, Zhengzhou University, Zhengzhou 450001, China |
|
|
Abstract We propose and numerically demonstrate a tunable plasmon-induced transparency (PIT) phenomenon based on asymmetric H-shaped graphene metamaterials. The tunable PIT effect is realized through varying the applied polarization angles rather than changing the structure geometry. By simply adjusting the polarization angle, the transmission spectra can be controlled between the switch-on state and switch-off state. The physical mechanism of the induced transparency is revealed from magnetic dipole inductive coupling and phase coupling. Importantly, by varying the Fermi energy of the graphene or the refractive index of the substrate, the resonant position of the PIT can be dynamically controlled and the maximum modulation depths can reach up to 60.7%. The sensitivity (nm/RIU) of the graphene structure, which is the shift of resonance wavelength per unit change of refractive index, is 5619.56 nm/RIU. Moreover, we also extend our research to the x-axis symmetric H-shaped structure, and the tunable PIT transmission window can also be realized. The physical mechanism of the induced transparency is revealed from the electric dipole hybridization coupling. Our designed H-shaped graphene-based structures is a promising candidate for compact elements such as tunable sensors, switches and slow-light devices.
|
Received: 10 July 2018
Revised: 29 August 2018
Accepted manuscript online:
|
PACS:
|
42.50.Gy
|
(Effects of atomic coherence on propagation, absorption, and Amplification of light; electromagnetically induced transparency and Absorption)
|
|
78.67.Pt
|
(Multilayers; superlattices; photonic structures; metamaterials)
|
|
61.48.Gh
|
(Structure of graphene)
|
|
Fund: Project supported by the Key Science and Technology Research Project of Henan Province, China (Grant Nos. 162102210164 and 1721023100107) and the Natural Science Foundation of Henan Educational Committee, China (Grant No. 17A140002). |
Corresponding Authors:
Chun-Zhen Fan
E-mail: chunzhen@zzu.edu.cn
|
Cite this article:
Yu-Chen Tian(田雨宸), Wei Jia(贾微), Pei-Wen Ren(任佩雯), Chun-Zhen Fan(范春珍) Tunable plasmon-induced transparency based on asymmetric H-shaped graphene metamaterials 2018 Chin. Phys. B 27 124205
|
[1] |
Boller K J, Imamoglu A and Harris S E 1991 Phys. Rev. Lett. 66 2593
|
[2] |
Harris S E 1997 Phys. Today 50 36
|
[3] |
Fleischhauer M, Physik F, Kaiserslautern D, Imamoglu A and Marangos J P 2005 Rev. Mod. Phys. 77 633
|
[4] |
Francesco M and Andrea A 2014 Chin. Phys. B 23 047809
|
[5] |
Wang X X, Sun J X, Sun Y H, Li A J, Chen Y, Zhang X J, Kang Z H, Wang L, Wang H H and Gao J Y 2015 Chin. Phys. B 24 074204
|
[6] |
Liu N, Langguth L, Weiss T, Kästel J, Fleischhauer M, Pfau T and Giessen H 2009 Nat. Mater. 8 758
|
[7] |
Luk'yanchuk B, Zheludev N I, Maier S A, Halas N J, Nordlander P, Giessen H and Chong C T 2010 Nat. Mater. 9 707
|
[8] |
Liu N, Weiss T, Mesch M, Langguth L, Eigenthaler U, Hirscher M, Sönnichsen C and Giessen H 2010 Nano Lett. 10 1103
|
[9] |
Yu Z, Chen H, Liu J J, Jing X F, Li X J and Hong Z 2017 Chin. Phys. B 26 077804
|
[10] |
Zhang Y D, Li J, Li H Y, Yao C B and Yuan P 2013 Opt. Laser Technol. 49 202
|
[11] |
Novikova I, Walsworth R L and Xiao Y H 2012 Laser Photon. Rev. 6 333
|
[12] |
He J N, Wang J Q, Ding P, Fan C Z, Arnaut L R and Liang E J 2015 Plasmonics 10 1115
|
[13] |
Chen J X, Wang P, Chen C C, Lu Y H, Ming H and Zhan Q W 2011 Opt. Express 19 5970
|
[14] |
Safavi-Naeini A H, Alegre T M, Chan J, Eichenfield M, Winger M, Lin Q, Hill J T, Chang D E and O 2011 Nature 472 69
|
[15] |
Wang L, Cai W, Zhang X Z, Liu P H, Xiang Y X and Xu J J 2013 Appl. Phys. Lett. 103 041604
|
[16] |
TianY C, Ding P and Fan C Z 2017 Opt. Eng. 56 107106
|
[17] |
Li H J, Wang L L, . Liu J Q and Huang Z R 2013 Appl. Phys. Lett. 103 211104
|
[18] |
Luo X, Qiu T, Lu W and Ni Z 2013 Mater. Sci. Eng. R 74 351
|
[19] |
Zhang W X, Liu Y X, Tian H, Xu J W and Feng L 2015 Chin. Phys. B 24 076104
|
[20] |
Vakil A and Engheta N 2011 Science 332 1291
|
[21] |
Koppens F H, Chang D E, Thongrattanasiri S and Garcia F J G 2011 Nano Lett. 11 3370
|
[22] |
Fu G L, Zhai X, Li H J, Xia S X and Wang L L 2017 J. Opt. 19 015001
|
[23] |
Fu G L, Zhai X, Li H J, Xia S X and Wang L L 2016 Plasmonics 11 1597
|
[24] |
Luo W W, Cai W, Xiang Y X, Wang L, Ren M X, Zhang X Z and Xu J J 2016 Opt. Express 24 5784
|
[25] |
Niu Y Y, Wang J C, Hu Z D and Zhang F 2018 Opt. Commu. 416 77
|
[26] |
Thongrattanasiri S, Koppens F H and Garcia F J 2012 Phys. Rev. Lett. 108 047401
|
[27] |
Yao Y, Kats M A, Genevet P, Yu N F, Song Y, Kong J and Capasso F 2013 Nano Lett. 13 1257
|
[28] |
Falkovsky L A and Pershoguba S S 2007 Phys. Rev. B 76 153410
|
[29] |
Gusynin V P, Sharapov S G and Carbotte J P 2007 J. Phys.: Condens. Matter 19 249
|
[30] |
Jablan M, Buljan H and Soljačić M 2009 Phys. Rev. B 80 245435
|
[31] |
Hanson G W 2008 J. Appl. Phys. 103 064302
|
[32] |
Novoselov K S, Geim A K, Morozov S V, Jiang D, Zhang Y, Dubonos S V, Grigorieva I V and Firsov A A 2004 Science 306 666
|
[33] |
Liu C, Liu P, Yang C and Lian B 2017 J. Opt. 19 115102
|
[34] |
Han M Y, Ozyilmaz B, Zhang Y and Kim P 2007 Phys. Rev. Lett. 98 206805
|
[35] |
Wu Y Q, Ye P D, Capano M A, Xuan Y, Sui Y, Qi M, Cooper J A, Shen T, Pandey D, Prakash G and Reifenberger R 2008 Appl. Phys. Lett. 92 092102
|
[36] |
Hu H, Zhai F, Hu D B, Li Z J, Bai B, Yang X X and Dai Q 2015 Nanoscale 7 19493
|
[37] |
Fang Z Y, Thongrattanasiri S, Schlather A, Liu Z, Ma L L, Wang Y M, Ajayan P M, Nordlander P, Halas N J and Javier Garcia de Abajo F 2013 ACS Nano 7 2388
|
[38] |
Yang R, Zhang L, Wang Y, Shi Z, Shi D, Gao H, Wang Y and Zhang G 2010 Adv. Mater. 22 4014
|
[39] |
Liu N, Kaiser S and Giessen H 2008 Adv. Mater. 20 4521
|
[40] |
Singh R, Plum E, Menzel C, Rockstuhl C, Azad A K, Cheville R A, Lederer F, Zhang W and Zheludev N I 2009 Phys. Rev. B 80 153104
|
[41] |
Ju L, Geng B, Horng J, Girit C, Martin M, Hao Z, Bechtel H A, Liang X G, Zettl A, Shen Y R and Wang F 2011 Nat. Nano 6 630
|
[42] |
Basu D, Gilbert M J, Register L F and Banerjee S K 2008 Appl. Phys. Lett. 92 042114
|
[43] |
Banadaki Y M and Srivastava A 2016 Electronics 5 11
|
[44] |
Wadhwa P, Kumar S, Kumar T J D, Shukla A and Kumar R 2018 J. Appl. Phys. 123 161416
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|