Please wait a minute...
Chin. Phys. B, 2018, Vol. 27(10): 100310    DOI: 10.1088/1674-1056/27/10/100310
GENERAL Prev   Next  

Fabrication of Al air-bridge on coplanar waveguide

Zhen-Chuan Jin(金震川), Hai-Teng Wu(吴海腾), Hai-Feng Yu(于海峰), Yang Yu(于扬)
National Laboratory of Solid State Microstructures, School of Physics, Nanjing University, Nanjing 210093, China
Abstract  

Superconducting coplanar waveguide (CPW) can be widely used as two-dimensional (2D) resonator, transmission line or feedline, providing an important component for superconducting quantum circuit which is a promising candidate for quantum information processing. Due to the discontinuities and asymmetries in the ground planes, CPW usually exhibits the spurious resonance, which is a common source of decoherence in circuit quantum electrodynamics experiments. To mitigate the spurious resonance, we fabricated superconducting aluminum air-bridges on Nb CPW. The fabricated air-bridges are approximately 3 μ high and up to 120 μ long. Compared with other methods, the fabrication procedures of our air-bridges are simpler, and the air-bridge can withstand strong ultrasound.

Keywords:  air-bridge      fabrication      superconducting coplanar waveguide  
Received:  04 May 2018      Revised:  21 June 2018      Accepted manuscript online: 
PACS:  03.67.Lx (Quantum computation architectures and implementations)  
  42.82.Cr (Fabrication techniques; lithography, pattern transfer)  
  85.25.-j (Superconducting devices)  
Fund: 

Project supported by the National Key Research and Development Program of China (Grant No. 2016YFA0301802) and the National Natural Science Foundation of China (Grant Nos. 11474152, 11274156, 11504165, and 61521001).

Corresponding Authors:  Hai-Feng Yu     E-mail:  hfyu@nju.edu.cn

Cite this article: 

Zhen-Chuan Jin(金震川), Hai-Teng Wu(吴海腾), Hai-Feng Yu(于海峰), Yang Yu(于扬) Fabrication of Al air-bridge on coplanar waveguide 2018 Chin. Phys. B 27 100310

[1] Wendin G 2017 Rep. Prog. Phys. 80 106001
[2] Devoret M H and Schoelkopf R J 2013 Science 339 1169
[3] Gu X, Kockum A F, Miranowicz A, Liu Y X and Nori F 2017 Phys. Rep. 718
[4] Blais A, Huang R S, Wallraff A, Girvin S M and Schoelkopf R J 2004 Phys. Rev. A 69 062320
[5] You J Q and Nori F 2003 Phys. Rev. B 68 064509
[6] Koch J, Yu T M, Gambetta J, Houck A A, Schuster D I, Majer J, Blais A, Devoret M H, Girvin S M and Schoelkopf R J 2007 Phys. Rev. A 76 042319
[7] Wen C P 1969 IEEE Trans. Microwave Theory Techniq. 17 1087
[8] Wallraff A, Schuster D I, Blais A, Frunzio L, Majer J, Girvin S M and Schoelkopf R J 2005 Phys. Rev. Lett. 95 060501
[9] Majer J, Chow J M, Gambetta J M, Koch J, Johnson B R, Schreier J A, Frunzio L, Schuster D I, Houck A A, Wallraff A, Blais A, Devoret M H, Girvin S M and Schoelkopf R J 2007 Nature 449 443
[10] Ponchak G E, Papapolymerou J and Tentzeris M M 2005 IEEE Trans. Microwave Theory Techniq. 53 713
[11] Liaw H J and Merkelo H 1997 IEEE Circ. Dev. Mag. 13 22
[12] Schuster C and Fichtner W 2001 IEEE Trans. Electromagn. Compat. 43 416
[13] Harokopus W and Katehi P 1991 IEEE MTT-S Int. Microwave Symp. Dig. 743-746
[14] Houck A A, Schreier J A, Johnson B R, Chow J M, Koch J, Gambetta J M, Schuster D I, Frunzio L, Devoret M H, Girvin S M and Schoelkopf R J 2008 Phys. Rev. Lett. 101 080502
[15] Chen Zijun, Megrant A, Kelly J, Barends R, Bochmann J, Chen Yu, Chiaro B, Dunsworth A, Jeffrey E, Mutus J Y, O'Malley P J J, Neill C, Roushan P, Sank D, Vainsencher A, Wenner J, White T C, Cleland A N and Martinis J M 2014 Appl. Phys. Lett. 104 052602
[16] Lankwarden Y J Y, Endo A, Baselmans J J A and Bruijn M P 2012 J. Low Temp. Phys. 167 367
[17] Dunsworth A, Megrant A, Barends R, Chen Yu, Chen Zijun, Chiaro B, Fowler A, Foxen B, Jeffrey E, Kelly J, Klimov P V, Lucero E, Mutus J Y, Neeley M, Neill C, Quintana C,Roushan P, Sank D,Vainsencher A, Wenner J, White T C, Neven H and Martinis J M 2018 Appl. Phys. Lett. 112 0563502
[18] Abuwasib M, Krantz P and Delsing P 2013 J. Vac. Sci. Tech. B 31 031601
[19] Dhakal R, Wang Cong, Kim Eun-Seong and Kimb Nam-Young 2015 Appl. Phys. Lett. 106 073702
[1] Onion-structured transition metal dichalcogenide nanoparticles by laser fabrication in liquids and atmospheres
Le Zhou(周乐), Hongwen Zhang(张洪文), Qian Zhao(赵倩), and Weiping Cai(蔡伟平). Chin. Phys. B, 2022, 31(7): 076106.
[2] Dynamic vortex Mott transition in triangular superconducting arrays
Zi-Xi Pei(裴子玺), Wei-Gui Guo(郭伟贵), and Xiang-Gang Qiu(邱祥冈). Chin. Phys. B, 2022, 31(3): 037404.
[3] Molecular beam epitaxy growth of quantum devices
Ke He(何珂). Chin. Phys. B, 2022, 31(12): 126804.
[4] Large-area fabrication: The next target of perovskite light-emitting diodes
Hang Su(苏杭), Kun Zhu(朱坤), Jing Qin(钦敬), Mengyao Li(李梦瑶), Yulin Zuo(左郁琳), Yunzheng Wang(王允正), Yinggang Wu(吴迎港), Jiawei Cao(曹佳维), and Guolong Li(李国龙). Chin. Phys. B, 2021, 30(8): 088502.
[5] Design, fabrication, and characterization of Ti/Au transition-edge sensor with different dimensions of suspended beams
Hong-Jun Zhang(张宏俊), Ji Wen(文继), Zhao-Hong Mo(莫钊洪), Hong-Rui Liu(刘鸿瑞), Xiao-Dong Wang(汪小东), Zhong-Hua Xiong(熊忠华), Jin-Wen Zhang(张锦文), and Mao-Bing Shuai(帅茂兵). Chin. Phys. B, 2021, 30(11): 117401.
[6] Fabrication and characterization of superconducting multiqubit device with niobium base layer
Feifan Su(宿非凡), Zhaohua Yang(杨钊华), Shoukuan Zhao(赵寿宽), Haisheng Yan(严海生), Ziting Wang(王子婷), Xiaohui Song(宋小会), Ye Tian(田野), and Shiping Zhao(赵士平). Chin. Phys. B, 2021, 30(10): 100304.
[7] Epitaxial fabrication of two-dimensional TiTe2 monolayer on Au(111) substrate with Te as buffer layer
Zhipeng Song(宋志朋), Bao Lei(雷宝), Yun Cao(曹云), Jing Qi(戚竞), Hao Peng(彭浩), Qin Wang(汪琴), Li Huang(黄立), Hongliang Lu(路红亮), Xiao Lin(林晓), Ye-Liang Wang(王业亮), Shixuan Du(杜世萱), Hong-Jun Gao(高鸿钧). Chin. Phys. B, 2019, 28(5): 056801.
[8] Controllable fabrication of self-organized nano-multilayers in copper-carbon films
Wei-Qi Wang(王伟奇), Li Ji(吉利), Hong-Xuan Li(李红轩), Xiao-Hong Liu(刘晓红), Hui-Di Zhou(周惠娣), Jian-Min Chen(陈建敏). Chin. Phys. B, 2019, 28(3): 036802.
[9] Nb-based Josephson parametric amplifier for superconducting qubit measurement
Fei-Fan Su(宿非凡), Zi-Ting Wang(王子婷), Hui-Kai Xu(徐晖凯), Shou-Kuan Zhao(赵寿宽), Hai-Sheng Yan(严海生), Zhao-Hua Yang(杨钊华), Ye Tian(田野), Shi-Ping Zhao(赵士平). Chin. Phys. B, 2019, 28(11): 110303.
[10] Etching-assisted femtosecond laser microfabrication
Monan Liu(刘墨南), Mu-Tian Li(李木天), Han Yang(杨罕), Hong-Bo Sun(孙洪波). Chin. Phys. B, 2018, 27(9): 094212.
[11] An overview of thermoelectric films: Fabrication techniques, classification, and regulation methods
Jing-jing Feng(冯静静), Wei Zhu(祝薇), Yuan Deng(邓元). Chin. Phys. B, 2018, 27(4): 047210.
[12] Fabrication and characterization of ultra-low noise narrow and wide band Josephson parametric amplifiers
Keqiang Huang(黄克强), Qiujiang Guo(郭秋江), Chao Song(宋超), Yarui Zheng(郑亚锐), Hui Deng(邓辉), Yulin Wu(吴玉林), Yirong Jin(金贻荣), Xiaobo Zhu(朱晓波), Dongning Zheng(郑东宁). Chin. Phys. B, 2017, 26(9): 094203.
[13] Laser-induced convenient fabrication of CdS nanocages with super-adsorption capability for methyl blue solution
Le Liu(刘乐), Lin-Lin Xu(徐林林), Hua Zhang(张华), Ming Chen(陈明). Chin. Phys. B, 2017, 26(8): 085206.
[14] The coupling effect of air-bridges on broadband spiral inductors in SiC-based MMIC technology
Jia-Xin Zheng(郑佳欣), Xiao-Hua Ma(马晓华), Yang Lu(卢阳), Bo-Chao Zhao(赵博超), Heng-Shuang Zhang(张恒爽), Meng Zhang(张濛), Li-Xiang Chen(陈丽香), Qing Zhu(朱青), Yue Hao(郝跃). Chin. Phys. B, 2017, 26(8): 088401.
[15] Three-dimensional simulation of fabrication process-dependent effects on single event effects of SiGe heterojunction bipolar transistor
Jin-Xin Zhang(张晋新), Chao-Hui He(贺朝会), Hong-Xia Guo(郭红霞), Pei Li(李培), Bao-Long Guo(郭宝龙), Xian-Xiang Wu(吴宪祥). Chin. Phys. B, 2017, 26(8): 088502.
No Suggested Reading articles found!